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Abstract

Facial features such as lip corners, eye corners and nose tip are critical points
in a human face. Robust extraction of such facial feature locations is an
important problem which is used in a wide range of applications. In this
work, we propose a probabilistic framework and several methods which can
extract critical points on a face using both location and texture informa-
tion. The new framework enables one to learn the facial feature locations
probabilistically from training data. The principle is to maximize the joint
distribution of location and apperance/texture parameters. We first intro-
duce an independence assumption which enables independent search for each
feature. Then, we improve upon this model by assuming dependence of loca-
tion parameters but independence of texture parameters. We model location
parameters with a multivariate Gaussian and the texture parameters are
modeled with a Gaussian mixture model which are much richer as compared
to the standard subspace models like principal component analysis. The lo-
cation parameters are found by solving a maximum likelihood optimization
problem. We show that the optimization problem can be solved using var-
ious search strategies. We introduce local gradient-based methods such as
gradient ascent and Newton’s method initialized from independent model
locations both of which require certain non-trivial assumptions to work. We
also propose a multi-candidate coordinate ascent search and a coarse-to-fine
search strategy which both depend on efficiently searching among multiple
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candidate points. Our framework is compared in detail with the conventional
statistical approaches of active shape and active appearance models. We per-
form extensive experiments to show that the new methods outperform the
conventional approaches in facial feature extraction accuracy.

Keywords: facial feature extraction, probabilistic method, gradient-based
optimization, search methods, Gaussian mixture models, principal
component analysis

1. Introduction

Flexible objects provide a challenge to computer vision since they can
change their form in unexpected ways and appear differently from one im-
age to another. One promising technique for characterizing and recognizing
flexible shapes is determining critical landmark points on the object. Such
landmark points can be used to model the shape and appearance of these
objects. Human face can be considered as a flexible object and critical points
on a face can be easily identified. These critical points can be the lip corners,
eye corners and nose tip for example.

In this paper, we call these critical points facial features and our goal is to
detect the location of those features. Facial feature extraction is an impor-
tant problem that has applications in many areas such as automatic visual
emotion detection, gesture recognition, pupil tracking, driver fatigue detec-
tion for safe driving, face detection systems following a bottom-up approach,
facial image compression and low-bit video coding.

1.1. Facial feature extraction methods in the literature

Facial feature extraction from a face image has been an intensive research
area. The work in this area can be divided into two parts: rule-based and
statistical.

Many works in the literature make use of the symmetry in a human face.
In [1], a generalized symmetry operator is used. Some other works following
this approach are [2, 3, 4]. Geometry-based approaches use some rule based
a-priori information. Some example works incorporating strict geometric
models are [5, 6, 7, 8, 9]. Low level image features such as corners and edges
are intensively used in the literature. Some previous works relying on those
features are [8, 10]. Works especially published recently using low level image
features are utilizing a method “Smallest Univalue Segment Assimilating
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Nucleus” or its abbreviation SUSAN, proposed in [11]. There are many
works using this method to extract low level image features of a face image,
for instance [12, 13]. A method which relies on the extraction of low level
features will not be robust since there are many candidate points extracted.
Typically, a symmetry based method or a geometrical relation is used to
eliminate candidate points. This clearly does not give the optimal locations
of facial features because of variations such as scaling, translation, rotation
and illumination conditions. Any kind of variation will make those a priori
rules useless.

Statistical approaches include active shape and apperance models. Shape
based approaches usually learn a subspace of facial feature point locations, by
introducing a point distribution model. The most famous method under this
class of algorithms is active shape models (ASM) also known as smart snakes
[14, 15]. Recent works making use of ASMs for facial feature extraction are
[16, 17, 18]. Unfortunately, there are some disadvantages of shape based
models. They only make sparse use of image information using local appear-
ance features. In some later works such as [18]; some possible improvements
are offered for ASM. Those improvements are: fitting more landmarks than
actually needed; selectively using two instead of one-dimensional landmark
templates; adding noise to the training set; loosening up the shape model
as the iterations advance; trimming covariance matrices by setting most en-
tries to zero and stacking two ASMs in series. However, whole appearance
information is an important property of human face and it is employed in
the active appearance model (AAM). AAM uses the whole apperance of the
represented region by warping the current image to a standard shape us-
ing locally linear mappings and model the variation of the texture in these
warped images. The method is expected to generalize to an unseen example
as long as the training database is large enough. AAM is first introduced in
[19]. It is based on ASM however there are significant differences. A good
comparison of ASM and AAM is given in [20]. Some works following the
AAM approach are [21, 22]. Performance of ASM and AAM approaches are
dependent on starting point accuracies. They may not directly handle cases
well outside of the training set. This includes unseen people in test data,
occlusions and extremely deformable objects [23].

There have been some earlier studies on facial feature localization for the
purpose of more accurate face detection [24, 25, 26, 27]. The goal in these
studies are to roughly locate the facial features and use this information to
detect a face. Their goal is much different than ours in this paper. We are
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aiming for very accurate facial feature localization and measure our success as
the deviation from hand-labeled feature points which we use as ground truth.
We think that AAM and ASM are the best competitors of our approach being
the de facto state-of-the-art methods for this specific problem and there is no
indication to believe that other approaches are better alternatives to them.
In addition there have been some studies to locate specific features such as
eye centers [28] which are in a different category since they specifically target
only certain facial features.

1.2. Our approach and relation to earlier work

Approaches like ASM and AAM are widely used for the purpose of facial
feature extraction. These are very popular methods, however their accura-
cies are limited. They may perform poorly on an unseen person’s face or face
images with accessories or other unexpected variations [23]. Both methods
make use of principal component analysis (PCA) which finds a linear mani-
fold (a shifted subspace) that models the data. ASM method utilizes a linear
manifold for the location parameters while local appearance on a line per-
pendicular to the contour is usually modelled with a Gaussian. AAM utilizes
linear manifolds (subspaces) of location and holistic appearance parameters
which are learned from training data. However, by default, learning in AAM
and ASM is not probabilistic and every point in the manifold is considered
equally likely. It is possible to use a probabilistic interpretation of PCA to
formulate a probabilistic version of AAM. However this probabilistic inter-
pretation of the AAM corresponds to a specific kind of a probabilistic model
(factor analysis model with a constant noise variance, so called probabilistic
PCA [29]) which is not the only possible probabilistic model one can use.
ASM and AAM are preferred in the context of facial features historically
since PCA uses a small number of parameters and yields fast and efficient
search algorithms. Our formulation of the problem is quite different than
ASM and AAM in that we do not assume that the feature point locations lie
in a linear manifold of the high dimensional space and we use a more general
appearance model.

The assumption of linear manifolds are used when there is strong evi-
dence that such a subspace exists or when there is not enough data to learn
all the parameters of a more complex model. In facial feature extraction,
this might have been true since recently since there were not many available
databases of hand-marked facial features. However, this has been changing
recently. Recently, crowdsourcing tools such as Amazon Mechanical Turk
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[30] and MIT’s LabelMe [31] have enabled cheap acquisition of labeled im-
ages for training statistical models. This makes it very important to invest on
more accurate machine learning approaches for the problem of facial feature
extraction and other landmark point extraction tasks. Since we are experi-
encing an explosion of data availability, it is possible to build more complex
models with a large number of parameters which have a potential to be more
accurate than the simpler models with a few parameters. This paper is a
work in this direction to be able to make use of more data to train more
complex models.

The model we used in this paper basically assumes that the location
parameters are represented by a full-covariance Gaussian, and local tex-
ture/appearance parameters are represented with a Gaussian mixture model
(GMM). No assumption of a linear manifold is used. This makes our model
much powerful to represent different appearances of people in the world. The
model is developed from scratch using a fully probabilistic formulation which
did not exist in the literature before. Hence, it is a completely new formu-
lation for the solution of the problem. Our model, with slightly different
assumptions on location and texture parameters and distributions, can be
shown to subsume variants of the ASM and AAM models. However, our
choices of the location and texture models make our model completely dif-
ferent than the ASM and AAM models with the basic difference being the
mis-assumption of the linear manifold and Gaussianity. GMM, which is used
to model the texture in our model is much more powerful than probabilistic
PCA since it can be used to fit a multiple mode distribution to data.

The difference between PCA and GMM is illustrated in Figure 1 on a 2D
dataset. The linear subspace which is found by PCA (dashed line) and the
equidensity curves of a three mixture GMM (solid curves) are shown. It is
clearly seen that these models are much different from each other and that
the GMM model is a much better fit as compared to the PCA model. For
example, PCA model will consider that the point shown with a circle is more
likely than the point shown with a cross, however the GMM model will assign
a higher probability to the cross as compared to the circle which makes more
sense intuitively. Although this dataset is in two dimensions, the illustration
helps to visualize the picture in higher dimensions as well.

Our approach is a new probabilistic method which is able to learn both
texture and location information of facial features in a person-independent
manner. The algorithm expects a face image as the input which is the output
of a good face detection algorithm. It finds the best facial feature locations
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Figure 1: Representation of a set of two dimensional data points by PCA and
GMM models. The data are the x and y coordinates of an eye corner from
500 face images. The dashed line shows the one-dimensional PCA subspace,
the solid contours represent the three mixture GMM equidensity curves. The
models will assign different probabilities to the two points indicated by a cross
and a circle.

by maximizing the joint distribution of location and texture parameters and
assuming appropriate parametric distributions for them. Initial candidate
points are found using an independence assumption easily. Then, we im-
prove upon this model by assuming dependence of location parameters but
independence of texture parameters which enables us to model location and
texture features separately in a complex model. This new complex prob-
lem is solved using some practical optimization or search algorithms since
an exhaustive search aiming to find the optimal locations is computationally
infeasible. Devising these various search methods is also a novelty of this
paper. Although the search methods are well known algorithms, they have
not been used in this context before and they require certain modifications
and assumptions to work efficiently in this problem. The introduced meth-
ods are novel competitive techniques in the problem of finding facial feature
point locations. We show that, using our methods, it is possible to find the
locations of facial features in a face image with less errors as compared to
the ASM and AAM methods which we consider as our main competitors.
Extensive experiments are done on three different databases to consistently
show the superiority of the proposed methods.
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A much shorter version of this work appeared in [32], where we developed
the independent and dependent location models for facial feature extraction.
In this work, we extend and embellish that previous work by introducing and
developing several new search techniques and a detailed discussion of results.
We also introduce a new section on texture representation using principal
component analysis. Two new search techniques are the coordinate ascent
and coarse-to-fine search techniques that will be explained in section 3.

The rest of the paper is organized as follows. Section 2 explains our
novel probabilistic model. In section 3, we focus on optimization and search
algorithms utilized to solve the optimization problem defined in section 2.
Experimental results are presented in section 4. Finally in section 5, we
summarize our findings and propose some future improvements.

2. The probabilistic model

Every facial feature is expressed with its location and texture compo-
nents. Let li = [xi, yi]

T denote the location of the ith feature in a 2D image1.
Given a face image and a location li, we can compute the texture vector ti
associated with it. We use f i = [lTi , t

T
i ]

T to denote the overall feature vector
of the ith critical point on the face. The dimension of the location vector is
2, and the dimension of the texture vector is p for each facial feature. Define
l = [lT1 , l

T
2 , . . . , l

T
N ]

T , t = [tT1 , t
T
2 , . . . , t

T
N ]

T and f = [fT
1 ,f

T
2 , . . . ,f

T
N ]

T as con-
catenated vectors of location, texture and combined parameters respectively.

Our goal is to find the best facial feature locations by maximizing the
joint distribution of locations and textures of facial features. We define the
joint probability of all features as follows:

P (f) = P (t, l). (1)

In this study, we will make different assumptions and simplifications to
be able to calculate and optimize this objective function. The optimal facial
feature locations can be found by solving the following optimization problem:

l̂ = argmaxlP (t, l). (2)

It is not easy to solve this problem without simplifying assumptions. Hence,
we introduce some of the possible assumptions in the following section.

1The location vector could be three dimensional in a 3D setup
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2.1. Independent features model

We can simplify the optimization problem given in equation (2) by as-
suming independence of each feature from each other. Thus, we obtain

P (t, l) ≈
N
∏

i=1

P (ti, li). (3)

We can model the joint probability P (ti, li) using a parametric distribution
for the concatenated vector f i and learn the parameters from training data.
One choice of a parametric distribution is a Gaussian mixture model (GMM)
which provides a multi-modal distribution. With this assumption, we can
estimate each feature location independently, so it is suitable for parallel
computation. Since

l̂i = argmaxliP (ti, li), (4)

each feature point can be searched and optimized independently. The search
involves extracting texture features for each location candidate (pixels) and
evaluating the likelihood function for the concatenated vector f i at that
location. The pixel coordinates which provide the highest likelihood score
will be chosen as the seeked feature location l̂i. Although this assumption can
yield somewhat reasonable feature points, since the dependence of locations
of facial features in a typical face are ignored, the resultant points may be
suboptimal in the sense of joint probability.

2.2. Dependent locations model

Another assumption we can make is to assume that the locations of fea-
tures are dependent while the textures are independent. First, we write the
joint probability as follows:

P (t, l) = P (l)P (t|l). (5)

Next, we approximate the second term in the equation above as:

P (t|l) ≈
N
∏

i=1

P (ti|l) ≈
N
∏

i=1

P (ti|li),

where we assume that the textures of each facial feature component is only
dependent on its own location and is independent of other locations and other
textures. Note that, textures of symmetric facial features will be dependent
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but we ignore this dependence in this work. Since the locations are modeled
jointly as P (l), we assume dependency among locations of facial features.
With this assumption, the equation of joint probability becomes:

P (t, l) = P (l)
N
∏

i=1

P (ti|li). (6)

We believe this assumption is a reasonable one since the appearance of a
person’s nose may not give much information about the appearance of the
same person’s eye or lip unless the same person is in the training data for
the system. Since we assume that the training and test data of the system
may involve different subjects for more realistic performance assessment, we
conjecture that this assumption is a valid one. The dependence of feature
locations however, is a more dominant dependence and it is related to facial
geometry of human beings. The location of the eyes is a good indicator for
the location of the nose tip for example. Hence, we believe it is necessary to
model the dependence of locations.

Finding the location l that maximizes equation (2) will find optimal lo-
cations of each feature on the face.

2.3. Texture representation using principal component analysis (PCA)

The texture parameters are extracted from rectangular patches around
facial feature points. Our probabilistic model does not limit the type of the
texture feature used. One may use many different texture features such as
Gabor features, local binary pattern (LBP) features or any other gradient-
based or gradient histogram based features introduced in the literature. How-
ever, we chose to use simple PCA features for simplicity and speed in this
work. PCA works quite well for our purposes. To use PCA, we train subspace
models from image data inside the rectangular patch and use p subspace basis
coefficients as the representation of texture in the patch.

Principal Component Analysis (PCA) is an orthogonal linear transforma-
tion that transforms the data to a new coordinate system. PCA can be used
for dimensionality reduction by keeping lower-order principal components
and ignoring higher-order ones. It is possible to select individual number of
lower-order principal components.

We collect the texture data of a facial feature using rectangular patches
around that feature’s point location, stacking them as column vectors of a
data matrix. Each rectangular patch contains M pixels. Suppose X is the
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mean subtracted data matrix, where each column contains M -dimensional
vectors of image pixel intensities. The covariance matrix of mean subtracted
data is calculated by

C =
1

N
XXT . (7)

An eigenvalue decomposition is applied to the covariance matrix by the for-
mula

V TCV = D, (8)

where V is an M×M square matrix with an eigenvector in each column and
D is a diagonal matrix containing the corresponding eigenvalues of eigen-
vectors. Here, M corresponds to the patch size extracted around a facial
feature point. Eigenvectors corresponding to larger eigenvalues are more im-
portant for the representation of the data. All of the eigenvectors form an
orthonormal basis. Dimensionality reduction is possible ignoring the eigen-
vectors with lower eigenvalues. Suppose that the dimension is to be reduced
to p where 1 ≤ p ≤ M , then p eigenvectors with the highest correspond-
ing eigenvalues are placed in columns of the transformation matrix W of
size M × p. When we obtain the transformation matrix, it is possible to
express the M dimensional feature vector xi extracted from the patch as p
dimensional feature vector ti by the formula

ti = W Txi. (9)

The elements of ti are the expansion coefficients of the orthonormal basis
vectors which are directly used as texture features.

2.4. Modeling location and texture features

A multivariate Gaussian distribution is defined as follows:

N (x;µ,Σ) =
exp (−1

2
(x− µ)TΣ−1(x− µ))

(2π)N/2|Σ|1/2
, (10)

where x is the input vector, N is the dimension of x, Σ is the covariance
matrix and µ is the mean vector.

Probabilistic modeling of location and texture features are separately
discussed for independent and dependent models in the following.
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2.4.1. Independent features model

For the model defined in 2.1, probability density for each concatenated
feature vector f i, P (f i) is modeled using a mixture of Gaussian distributions.
GMM likelihood can be written as follows:

P (f i) =
K
∑

k=1

wk
iN (f i;µ

k
i ,Σ

k
i ). (11)

Here K is the number of mixtures; wk
i , µ

k
i and Σk

i are the weight, mean
vector and covariance matrix of the kth mixture component; representing the
facial feature point i. N indicates a Gaussian distribution with specified
mean vector and covariance matrix.

2.4.2. Dependent locations model

For the model defined in 2.2, probability density P (ti|li) of texture pa-
rameters ti given location li is also modeled using a GMM as in equation
(11).

During testing, for each facial feature i, a GMM texture log-likelihood
image is calculated as:

Ii(x, y) = log (P (ti|li = [x y]T )). (12)

Note that, to obtain Ii(x, y), we extract texture features ti around each
candidate pixel li = [x y]T and find its log-likelihood using the GMM model
for facial feature i.

Our model for P (l) is a Gaussian model, resulting in a convex objective
function. Location vector l of all features is modeled as follows:

P (l) = N (l;µ,Σ). (13)

Under our assumption of P (l) being multivariate Gaussian, marginal
distribution of location parameters of feature i, namely P (li), is a two-
dimensional Gaussian distribution. Since equidensity curves of a 2D Gaussian
is an ellipse, when we threshold this distribution from below, we obtain the
inside region of an ellipse in 2D. So, each feature is searched inside an ellipse
region which is obtained by thresholding the 2D Gaussian distribution for
that feature. These regions are shown in a sample face image in Figure 4.
GMM scores are calculated at the centers of each pixel inside these ellipses
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for faster computation. We assume that we have only Ni candidate points
for feature i.

The model parameters are learned from training data using maximum
likelihood. Expectation maximization (EM) algorithm is used to learn the
parameters for the GMMs [33].

2.5. Relation to ASM and AAM models

As we mentioned in the introduction section, ASM and AAM are also
statistical models that can learn from training samples. In this section, we
will compare our model with ASM and AAM models. First of all, we must
state that ASM and AAM models are not introduced as probabilistic mod-
els. Neither are the learning algorithms for ASM and AAM introduced as
closed form optimization problems (such as maximum likelihood) of any kind.
They are learned by assuming parametric models for shape and appearance,
and model parameters are iteratively updated for matching the image at
hand. For matching, usually least-squares matching is used which suggests
the assumption of a Gaussian noise model (which is not explicitly stated in
general).

As mentioned before, the shape model used in ASM and AAM is a PCA
model which has a probabilistic equivalent called probabilistic PCA [29].
Probabilistic PCA is a latent variable factor analysis model with constant
diagonal noise covariance. This essentially assumes that the data lies in a
linear manifold (subspace) which may or may not be a good assumption for
the data. This assumption is usually made when there is strong evidence in
favor of it. We claim that this model may be a good model for a single per-
son’s face, however it is not a good model when a person-independent model
is seeked. Thus, we model the shape parameters (l) with a full-covariance
Gaussian model.

For the texture part of the model, ASM uses a single dimensional pro-
file model for each feature point P (ti|li) which is modeled as a multivariate
Gaussian distribution. Recently, using 2D profiles (similar to our use of 2D
patches) has been suggested to improve performance [18]. Our model is a
Gaussian mixture model which is an improvement over the single Gaussian
assumption.

In AAM, the texture model P (t|l) is equivalent to a probabilistic PCA
model in the warped space. In AAM, the texture is modeled as a whole (not
individually for each feature) after locally linearly warping the object to a
standard shape. This model uses different assumptions about the data than
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our model. We compare performance of our model with its main competitors
ASM and AAM in the experiments section.

Although we show that our model gives better results as compared to
ASM and AAM, we would like to point out that AAM and ASM are still
useful and important models. For example, AAM model enables generation
of the face image with a few number of parameters, so that easy manipula-
tion of faces becomes possible by manipulating the parameters of the model.
ASM is also a very fast model which enables fast matching. Our model has
more parameters and is more complex to search for the best matching result.
However, we foresee that the search speed for our model can be considerably
improved by further researches. We also compare the speed of the algorithms
in the experiments section. Our goal in this paper is to show that our model
is another possible model for facial feature extraction that works consider-
ably well in the databases we worked with. It is a promising approach which
moves in a different direction from the mainstream models of AAM and ASM
and it is a model that is worth investigating further.

3. Search methods

Brute force search for optimal facial features (which maximize the joint
likelihood) will involve an exhaustive search among

∏N
i=1 Ni candidates where

we consider Ni candidates for each facial feature. This is clearly a very large
number and we need methods to reduce the amount of computation needed
for searching for the best feature locations.

Our first assumption of independence among features enables us to search
for each feature separately. For the ith feature, we need only search for Ni

candidate locations (pixel centers in the region of interest). We calculate
P (f i) in equation (11) using GMM scores for each candidate location li of
feature i and decide the location with maximum GMM score as the location
for feature i.

For our more advanced dependent-locations model, we develop four dif-
ferent search methods. First two of these methods depend on gradient-based
maximization of the dependent-location joint likelihood. The last two search
methods are based on efficient search techniques for multiple candidates and
use function evaluation only without requirement of calculating (or approxi-
mating) the gradient.

We obtain the log-likelihood of equation (6) by taking its logarithm. Be-
cause the texture of each feature is dependent on its location, we can define
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an objective function which only depends on the location vector:

φ(l) = log (P (t, l)) (14)

= log (P (l)) +
N
∑

i=1

log (P (ti|li)). (15)

Using the Gaussian model for location and GMM for texture defined in Sec-
tion 2.4, we can write the objective function φ as:

φ(l) =
−β

2
(l− µ)TΣ−1(l− µ) +

N
∑

i=1

Ii(xi, yi) + C1. (16)

Here, µ is the mean location vector, and Σ−1 is the precision (inverse covari-
ance) matrix, learnt during the training. β is an adjustable hyperparameter,
allowing us to weight the variance coming from the location model. Ii(x, y)
is the score image of feature i defined in equation (12) and C1 is a constant
independent of the location parameters.

So our goal is to find the location vector l giving the maximum value of
φ(l):

l̂ = argmaxlφ(l). (17)

To find this vector, we introduce four different search algorithms and compare
their performances in the results section.

3.1. Gradient ascent

We can use gradient ascent to optimize (16) starting from independently
found initial locations. Evolution formula for the gradient ascent optimiza-
tion is given as follows:

l(n) = l(n−1) + kn∇φ(l(n−1)). (18)

Here, n denotes the iteration number. We can write the location vector l as:

l = [x1, y1, x2, y2, ..., xN , yN ]
T . (19)

Then we can write the gradient of φ as:

∇φ(l) = [∂φ/∂x1, ∂φ/∂y1, ..., ∂φ/∂yN ]
T . (20)
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For a single feature i:

∂φ/∂xi =
∂

∂xi

logP (l) +
N
∑

i=1

∂

∂xi

logP (ti|li), (21)

and

∂φ/∂yi =
∂

∂yi
logP (l) +

N
∑

i=1

∂

∂yi
log (P (ti|li)). (22)

The gradient for the location part can be calculated in closed form due to
the modeled Gaussian distribution and the gradient for the texture part can
be approximated from the score image using discrete gradients of the score
image. Plugging in the values for the gradients, we obtain the following
gradient ascent update equation for the algorithm:

l(n) = l(n−1) + kn(−βΣ
−1(l(n−1) − µ) +G), (23)

where

G =















G1
x(l

n−1
1 )

G1
y(l

(n−1)
1 )
...

GN
x (l

(n−1)
N )

GN
y (l

(n−1)
N )















. (24)

Here, Gi
x and Gi

y are the two-dimensional numerical gradients of Ii(x, y) in
x and y directions respectively. The gradients are computed only for every
pixel center (integers) in the image. Since l(n) is a real-valued vector, we use
bilinear interpolation to evaluate gradients for non-integer pixel locations. G
is the collection vector of gradients of all current feature locations in the face
image. kn is the step size which can be tuned in every iteration n. Iterations
continue until the location difference between two consecutive iterations is
below a stopping criterion.

3.2. Newton’s method

Similar to the gradient ascent, we may also employ Newton’s method
which requires calculating the second derivatives with respect to the loca-
tions. Iterations for the Newton’s method for optimization is given as follows:

l(n) = l(n−1) +Hφ(l
(n−1))−1

∇φ(l(n−1)), (25)
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where Hφ(l
(n−1)) is the 2N × 2N Hessian matrix of vector function φ.

Hessian matrix of the objective function is defined as:

Hφ(l
(n−1)) = −βΣ−1 +A, (26)

where A = ∂2

∂xi∂yi

∑N
i=1 Ii(xi, yi).

It turns out thatA is a block diagonal matrix and it can be approximately
computed using second order gradients of the score image Ii as follows:

A =

















G1
xx(l

n−1
1 ) G1

xy(l
n−1
1 ) 0 0 ...

G1
yx(l

n−1
1 ) G1

yy(l
n−1
1 ) 0 0 ...

0 ...
...
0 0 ... GN

xx(l
n−1
N ) GN

xy(l
n−1
N )

0 0 ... GN
yx(l

n−1
N ) GN

yy(l
n−1
N )

















. (27)

The gradientsGi
yx andGi

xy are expected to be the same. However, because
of the interpolation process, they may end up having different values. So we

take the average Ĝi
yx = Ĝi

xy =
Gi

yx+Gi
xy

2
to overcome this problem.

Limited memory Broyden Fletcher Goldfarb Shanno (L-BFGS)[34] and
Levenberg-Marquardt algorithms [35, 36] are two different optimization al-
gorithms that depend on the idea of approximately computing the Hessian
matrix or its inverse. We have not considered these algorithms in this work
as speed was not a major concern and the Hessian matrices we calculate are
only 18 × 18 making it easy to work with them, but it may be possible to
speed-up the algorithm (especially when more facial features are required to
be found) by considering such approximations.

3.3. Multiple-peak coordinate-wise search

It is possible to find multiple candidates of optimal feature locations using
multiple peaks from the independent model. Gradient-based optimization
algorithms given in 3.1 and 3.2 may get stuck in a local maximum as they
start from the best independent locations and make a gradient based local
search. However, if we consider some number of peaks for each facial feature
and find the best combination of them; we may end up in a locations vector
giving a better objective function value. Even using a reduced number of
peaks for each feature, it may not be possible to exhaustively search for each
combination. For example, if we consider only 5 candidates for each of 9
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features, this would require 59 = 1953125 possible combinations and function
evaluations. In order to avoid the highly expensive exhaustive search, we
employ the heuristic search method in Algorithm 1 which searches for the
best candidate using a coordinate ascent idea.

Algorithm 1 Coordinate ascent search.

1: Pick the locations li,j of ni best independent GMM score peaks for each
facial feature i and candidate j, where 1 ≤ j ≤ ni and Ii(li,1) ≥ Ii(li,2) ≥
. . . ≥ Ii(li,ni

)

2: Initialize the new location collection vector l̂i ⇐ li,1 containing the best
GMM score peak locations, for each facial feature i

3: repeat

4: l̂old ⇐ l̂

5: for k = 1 to N do

6: i⇐ σ(k)

7: Update l̂i ⇐ li,ĵ where ĵ = argmaxjφ([̂l
T

1 , . . . , l
T
i,j, . . . , l̂

T

N ]
T )

8: end for

9: until l̂ = l̂old

Note that this algorithm guarantees monotonic increase of the log-likelihood
but still does not guarantee global convergence. In this algorithm, σ(.) de-
notes a permutation of the sequence {1, . . . , N} thus it determines the order
of processing of each feature. In practice, we may change the order of up-
dating each feature to first process the ones that are more reliably found as
compared to others as we discuss more in the results section.

3.4. Coarse-to-fine search

It is a common approach in image processing problems to represent an
image in different scales and perform a coarse-to-fine search. There have been
studies that exploit this in the context of facial feature extraction [37]. So,
we applied this approach to our method as well. We learn different texture
models at different scales from our training data. Our scales increase twice
in size, so if we have Nx×Ny images, we start with Nx/8×Ny/8 images and
move up to Nx ×Ny by doubling the size at each step and in total, we have
four different scales.

To achieve coarse-to-fine search, the following steps are taken:

17



1. Apply gradient search for the dependent-locations model at the coarsest
level.

2. For each finer level, apply independent search in an M ×M window
centered around a pixel that corresponds to the location found in the
coarser level.

It is not necessary to benefit from dependent-locations model except for
the coarsest level since the number of candidate locations is very small, hence
the search is made only around previously found locations for each facial
feature. This method reduces the candidates to search for each feature by
making use of the estimated location from the coarser level. Only M2 lo-
cations are separately searched for each feature at each scale. Typically we
take M = 3.

4. Experimental results

In this section, we describe our experiments in detail. We give information
about pre-processing performed and databases used. We have performed
extensive experiments on three different database setups and compared our
methods with recent implementations of AAM and ASM methods which are
being used in the community. We also compare the computation times for
each method.

4.1. Preprocessing

4.1.1. Face detection

For the detection of the face of interest in an image, the approach in [38]
is followed without further improvements. This algorithm is currently state
of the art and is based on efficiently extracting Haar-like features and using
those features in an Adaboost classification - feature selection framework.

An example video frame from our database and its corresponding detected
face image are shown in Figure 2.

4.1.2. Face normalization

Face image has to be processed after face detection to normalize various
effects such as scaling, rotation, translation and side illumination. We assume
that the face detection output is correct, so there is no translation in face
image. Face image is resized to a fixed dimension during both training and
test steps to overcome the effects of different scalings.
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(a) Input image (b) Detected face image

Figure 2: Example face detection result.

To normalize side illumination effects, a four-region adaptive histogram
equalization is applied as described in [39]. It is based on dividing the face
image into 4 big rectangles and doing histogram equalization in each rectangle
separately. Then each pixel is affected by 4 histogram equalization functions
by its distance to each 4 regions.

4.2. Databases and evaluation strategy

We used various face video databases and their combinations for compre-
hensive training and testing of our method. We use three different databases
with different train and test images to evaluate our method with four differ-
ent search techniques and compare the results with the results obtained with
ASM and AAM methods which are the main competitors for our method as
we elaborated before. We use the standard evaluation criteria used in earlier
work which is the mean and maximum obtained over all the test images of
me9 distances which is defined as the “average error over the critical points
normalized by the distance between the eyes” [18]. In addition to providing
the mean and maximum distances, we also provide cumulative error distri-
butions for me9 values for each method as well. In addition we provide search
speeds for each method in section 4.8.

Databases that we used for facial feature extraction results are as follows.

1. Sabanci University Turkish Audio Visual Database (SUTAV): Consists
of many male and female individuals’ frontal videos counting from zero
to nine in Turkish. There are two tapes with same individuals and
same number of videos. Individuals are in different conditions in two
different tapes in terms of dressings, facial hair and illumination. No
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excessive head rotations, scalings and translations of the face region
is present. It is a relatively challenging database because it includes
different illumination conditions. We hand-marked the locations of
necessary facial features in selected frames manually to make use of
this database.

2. Multi Modal Verification for Teleservices and Security Applications
Face Database (M2VTS - [40]): It is made up from 37 different faces
and provides 5 shots for each person. These shots were taken at one
week intervals or when drastic face changes occurred in the meantime.
During each shot, people have been asked to count from zero to nine in
their native language (most of the people are French speaking). There
are videos including various head rotations. We used the videos without
head rotations. We selected random frames per video and hand-marked
them as in SUTAV database.

3. Technical University of Denmark Department of Informatics and Math-
ematical Modeling Face Database (IMMDB - [41]): The IMM Face
Database comprises 240 still images of 40 different human faces, all
without glasses. The gender distribution is 7 females and 33 males.
The following facial structures were manually annotated using 58 land-
marks: eyebrows, eyes, nose, mouth and jaw. We used only nine facial
features of our interest. Each person has six different images:

(a) Full frontal face, neutral expression, diffuse light.
(b) Full frontal face, happy expression, diffuse light.
(c) Face rotated approximately 30 degrees to the person’s right, neu-

tral expression, diffuse light.
(d) Face rotated approximately 30 degrees to the person’s left, neutral

expression, diffuse light.
(e) Full frontal face, neutral expression, spot light added at the per-

son’s left side.
(f) Full frontal face, joker image (arbitrary expression), diffuse light.

Some facial features are unseen in some face images with much rotation.
We found and removed those images.

We used some subsets and combinations of the data- bases explained
above and made different experiments with each set:

• Set 1:
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– Training: All IMMDB face images except 24 images having some
facial features occluded because of head rotation (216). In addi-
tion, randomly selected 4 images of 15 females and 10 males from
SUTAV (100). Totally 316 frontal face images are used.

– Testing: We randomly selected 4 images of 14 females and 11
males from SUTAV (100). No identity in the test set is used in
the training set.

– Purpose: This data set is our base setup where we check the
performance of a person-independent system.

• Set 2:

– Training: In addition to the training part of Set 1, randomly se-
lected images of 27 subjects from each 5 tape of M2VTS are used.
28 face images are eliminated because of faulty face detection re-
sults. That makes a training set of 423 face images.

– Testing: Same as the test part of Set 1.

– Purpose: This set in comparison to Set 1, can be used to see how
increasing the amount of training data increases performance of
the algorithms.

• Set 3: Only M2VTS frames are used for this set. Training and testing
groups are shown below:

– Training: 10 random frames from each 5 tape of 10 subjects are
selected. Those subjects are distinct from the 27 subjects used in
Set 2 training. There are in total 500 face images in this training
set.

– Testing: 2 random frames from each 5 tape of the same 10 subjects
are selected. Those frames are distinct from the ones selected in
training. There are in total 100 face images in this testing set.

– Purpose: This set, unlike first two sets, contain face images from
the same people in both training and testing data. It is a good set
to determine how good the performance is when there is subject
overlap in training and testing databases.
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Figure 3: Nine different facial features considered in this work.

4.3. Parameters

In this work, we tried to estimate the locations of nine different facial
features. These critical points are four eye corners, nose tip and four lip
corners. The numbering of the features are shown on a sample face image
in Figure 3. It is possible to use the algorithms developed in this paper to
estimate more locations as well, however we found that these nine points are
much less ambiguous resulting in more reliable ground-truth data and finding
these nine points were enough for our purposes, so it is a waste to search for
more points.

There are miscellaneous critical parameters used during our experiments.
We found the optimal parameter values with limited experimentation on a
subset of Set 1. We used 320× 300 face images, then down-sampled them to
80 × 75 preserving the aspect ratio, for faster computation while improving
the performance in terms of errors. We have observed that using higher reso-
lution images resulted in worse results due to algorithms getting stuck at local
maxima, so we used a four-fold downsampled image for our search methods
except for the coarse-to-fine method which starts with 40× 38 and moves up
to the full resolution of 320× 300. We analyzed the effect of different resolu-
tions in Section 4.6. PCA subspaces of varying dimensions are obtained for
different facial features by using the texture information inside rectangular
patches around facial features. Four-region adaptive histogram equalization
based side-illumination normalization method described in Section 4.1.2 re-
sulted in better facial feature extraction results. We used this method in
two different ways: Features having this histogram equalization method as
1; histogram equalization is applied for red, green and blue channels sepa-
rately and the resulting image is converted to gray-level. For features having
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Table 1: PCA subspace dimension and window size parameters used for facial
features.

Feature PCA dimensions Window size Hist. eq.

1 30 17× 17 2
2 30 17× 17 1
3 30 21× 21 2
4 30 11× 11 2
5 20 11× 11 2
6 50 25× 25 1
7 50 27× 27 2
8 50 25× 25 2
9 50 39× 39 2

this histogram equalization method as 2; image is converted to gray-level
and then histogram equalization is applied to the resulting image. Those
training parameters are found experimentally. Optimal PCA dimensions of
each facial feature, window sizes used around facial feature points and side
illumination normalization methods used are shown in Table 1. For facial
features having large variability between different people, like jaw and lip;
we had to train larger dimensional PCA subspaces and had to use larger
windows.

Search locations for facial features are found by thresholding the marginal
Gaussian distributions (derived from P (l)) for locations of each feature.
Search areas are shown in Figure 4. Ellipses denote the boundaries of search
regions and pentagrams denote the mean facial feature locations.

For the independent model explained in Section 2.1, texture coefficients
and location vectors are used to build a GMM model to obtain scores. We
tried two different types of GMM models. First one is the concatenated
vector choice where texture coefficients and location vectors are combined
as required in our independent model (GMMindep). In the second choice,
we only used texture coefficients as our dependent locations model implies
(GMMdep). We used two mixtures for GMMs which gave the best results in
most of the experiments which means that there are basically two clusters of
texture data for each feature.

For each feature, the pixel giving the highest independent GMM score is
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(a) Outer eye and lip cor-
ners

(b) Inner eye corners and
bottom lip corner

(c) Nose tip and upper lip
corner

Figure 4: Search regions for facial features.

selected as the initial location. These locations are then used to initialize
various search methods to solve the dependent locations model introduced in
section 2.2. For some cases, locations of the facial features may not converge
to optimal locations, and the locations oscillate without further improve-
ment. This situation can sometimes be determined by limiting the maximum
number of iterations. If norm of the location difference vector between two
consecutive iterations is not lower than a threshold when the maximum num-
ber of iterations is reached, optimization process for that image is canceled
and independent model result is used as the dependent model result.

In coordinate ascent method, locations are updated with a special order
in each iteration. The order is chosen according to the decreasing reliability
of GMM scores of facial features. This a priori information is available via
the results of previous experiments. Most reliable facial feature is the nose,
followed by upper and left-right lip corners, inner eye corners, outer eye
corners and bottom lip corner. We have observed that when the system
sticks to this order, results are better than any other ordering.

The parameter values such as window sizes, PCA dimensions, GMM
mixtures, illumination normalization methods can be fine-tuned for each
database using validation data. However, in this paper, we used the in-
dicated values for each database and still obtained good results. This shows
that the proposed methods are promising even when non-optimized param-
eters are used. We also report some results with fixed parameter values in
Section 4.7 which are close to the results we obtained in this section.
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Table 2: Comparison of median and maximum me9 errors for different search
methods considered in this work and other competing methods.

Set 1 IND GA NM CA C2F ASM ASMG AAM

Med 0.0494 0.0419 0.0416 0.0460 0.0426 0.0566 0.0703 0.0493

Max 0.1449 0.1623 0.1623 0.1462 0.1460 0.1438 0.3681 0.1028

Set 2 IND GA NM CA C2F ASM ASMG AAM

Med 0.0464 0.0408 0.0403 0.0432 0.0435 0.0539 0.0703 0.0494

Max 0.1424 0.1432 0.1432 0.1600 0.1466 0.1907 0.3681 0.1092

Set 3 IND GA NM CA C2F ASM ASMG AAM

Med 0.0348 0.0309 0.0308 0.0337 0.0311 0.0405 0.0663 0.0358

Max 0.0772 0.0715 0.0847 0.0902 0.0620 0.1403 0.1017 0.0990

4.4. Accuracy results and comparison

To obtain a performance criteria for testing, we used the method pro-
posed in [37]. Mean of Euclidean point-to-point errors for feature locations
is divided by the ground truth inter-ocular distance between the left and right
eye pupils. This error is called the normalized error and is applied for the 9
features that we have used, and we name itme9. We obtain a singleme9 value
for each face image, which is the average of all facial features’ errors. We con-
sidered median and maximum of me9 values over all test data as in [18]. The
maximum values give an idea about the performance of a method in the worst
case scenario. We discuss the performance of our various search methods in
different data sets in the following. We also compare the performance of our
methods with the ASM method using the ASM implementation STASM [18]
and the AAM method using the AAM implementation AAM-API [42].

Results of the independent model (IND), dependent-locations model with
gradient ascent (GA), Newton’s method (NM), coordinate ascent search (CA)
along with coarse-to-fine search (C2F), ASM and AAM are collected in Table
2 for comparison2. STASM comes with a pre-built model which is trained
using a large data-set. Results obtained with this model is also shown in the
same table, denoted as ASMG. Results for the first and second sets are same
with the pre-built model since first two sets consist of the same test images.

2Some results using the AAM method are slightly different from the results given in
[32] because we corrected a computational error in analyzing the results.
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Table 3: Coarse-to-fine search results.

Set 1 40× 38 80× 75 160× 150 320× 300

Median 0.0434 0.0454 0.0419 0.0426
Maximum 0.1506 0.1450 0.1480 0.1460

Set 2 40× 38 80× 75 160× 150 320× 300

Median 0.0419 0.0448 0.0431 0.0435
Maximum 0.1431 0.1427 0.1464 0.1466

Set 3 40× 38 80× 75 160× 150 320× 300

Median 0.0354 0.0346 0.0333 0.0311
Maximum 0.1115 0.0571 0.0595 0.0620

All other methods are trained using the training data for each set. Evolution
results of coarse-to-fine search are shown in Table 3. We used 4 different
scales to be used in coarse-to-fine search and errors at each resolution are
provided. Each finer level searches 3 by 3 pixels around the result of the
coarser resolution. We did not use dependent-locations model except for
the coarsest level as the candidate pixels at finer resolutions are constrained
to be around good locations (achieved by the coarsest level) already and it
is a waste to re-evaluate the joint likelihood with various combinations of
candidate pixels at each level. So according to our formulation, only coarsest
level uses GMMdep. Finer levels use GMMindep.

We also plot cumulative error curves as explained in [37]. On these curves,
the value of the y-axis is the ratio of face images with me9 error less than
the value in the x-axis. In Figure 5, comparison of cumulative error curve
between our methods for all sets are given. In Figure 6, we select our best
method for each set and plot its cumulative error curve together with the
error curves of ASM and AAM methods.

For data sets involving different people in train and test parts, all search
methods outperformed ASM and AAM in terms of median errors. For the
Set 3 involving same people in train and test parts, our method is still better
than AAM, even for the independent model in terms of median and maximum
errors. Our method outperforms ASM also in terms of maximum errors
in all cases, however AAM is generally better in terms of maximum errors
for the first two sets. Newton’s method (NM) and gradient ascent (GA)
give close results in general. However, Newton optimization converges in
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Figure 5: Comparison of cumulative error distributions for different search
methods.
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Figure 6: Comparison of cumulative error distributions for the best search
method of each set with ASM and AAM.
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(a) Independent locations (b) Dependent locations

Figure 7: Facial feature locations obtained using independent and dependent
locations models, with a good independent model initialization.

fewer iterations, making it faster than gradient ascent optimization. Newton
optimization is slightly better than other search methods in terms of median
errors, for Set 1 and Set 2 which are more realistic as they have distinct train
and test subjects. However for those sets, coarse-to-fine search is better in
terms of maximum errors. We attribute this to the incremental nature of this
method which gets close to the actual locations in the coarsest resolution and
does not allow much deviation from them in finer resolutions, reducing the
maximum errors that can be made. Coarse-to-fine search also provides more
stable results among different sets. However, training for coarse-to-fine search
takes longer, as it needs models for all resolutions that take place during the
search. But once it is trained, it allows for a faster search as it needs to
perform a full search only in the coarsest resolution. In finer resolutions,
the search is very fast since there are few candidate locations. Coordinate
ascent results are acceptable and usually run faster than or comparable to
the gradient based methods.

Two example facial feature extraction results using the independent model
and dependent-locations model with gradient ascent search are shown in Fig-
ure 7 and Figure 8.

4.5. Robustness to face detection errors

In this part, we analyze the performance of our method with respect
to face detection errors. We performed some experiments where we added
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(a) Independent locations (b) Dependent locations

Figure 8: Facial feature locations obtained using independent and dependent
location models, with an inaccurate independent model initialization.

noise to regular face detection results. For these experiments, a dataset
consisting of IMMDB images is used. First 96 images are used for training
and the remaining 120 images are used for testing. We only provide the
dependent model results using the Newton’s method. Effects of translation
errors are given in Figure 9. Here, σ denotes the coefficient of standard
deviation of translation errors, which is multiplied by image width and height
to obtain a translation error added to the x or y coordinates of both the top-
left coordinates and bottom-right coordinates of face detection rectangles
quadrupling the effect of the noise. Effectively we move each side of the
face detection rectangle using the generated noise. We can see that the
performance of the method gets worse with increasing face detection noise
as expected. The errors are doubled when there is noise with a standard
deviation of 7-8%. However in practice, face detectors are getting better and
better and we have not seen such large errors in real cases. Face detectors
usually fail totally or detect the face region pretty accurately. We can say
that the facial feature localization will work well when the faces are correctly
detected or when there is an error in the detected face region less than 5%.

4.6. Image resolution experiments

In this part, we report our experiments investigating the effects of reso-
lution of face images used in detecting facial feature points. We provide the
median accuracies and test times for the independent model and dependent
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Figure 9: Effects of face detection errors on me9.

model with Newton’s method in Figure 10. Experiments are realized using
Set 1. We observe that in the independent model, using a higher resolution
image improves the results with a payoff in computation time. However in
the dependent model, the accuracies are best when a reduced resolution im-
age (1/4 of the actual dimensions) is used with the added benefit of reduced
computation time. We conjecture that in higher resolutions, the gradient
search algorithms get stuck in local maxima and yield suboptimal results.
For this reason, we use images of quarter resolution to detect facial features
using our dependent model.

4.7. Experiments with fixed parameters and window sizes

In this part, we analyze the performance of the algorithms when fixed
parameters are used for all features. PCA subspaces of dimension 50 are
obtained for all facial features by using the texture information inside square
patches of fixed size 25× 25 around facial feature candidate points in images
of resolution 80 × 75. Also, we apply a single histogram equalization to the
grayscale image in these tests. The results are given in Table 4. We observe
that the results are comparable to the ones given in Table 2. Thus, we
conjecture that our methods are not very sensitive to the specific values of
these parameters.

We also report results with double and half the window sizes used in
Table 5. The results show that the performance is not exteremely sensitive
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Figure 10: Effects of changing resolutions in median accuracy and test times
in the independent and dependent models.

31



Table 4: Comparison of me9 errors when using fixed parameters.

Set 1 Indep.
Gradient
ascent

Newton
Coord.
ascent

Coarse-
to-fine

AAM

Median 0.0494 0.0419 0.0416 0.0460 0.0426 0.0493
Maximum 0.1449 0.1623 0.1623 0.1462 0.1460 0.1028

Set 2 Indep.
Gradient
ascent

Newton
Coord.
ascent

Coarse-
to-fine

AAM

Median 0.0464 0.0408 0.0403 0.0432 0.0435 0.0494
Maximum 0.1424 0.1432 0.1432 0.1600 0.1466 0.1092

Set 3 Indep.
Gradient
ascent

Newton
Coord.
ascent

Coarse-
to-fine

AAM

Median 0.0348 0.0309 0.0308 0.0337 0.0311 0.0358
Maximum 0.0772 0.0715 0.0847 0.0902 0.0620 0.0990

with respect to the window size used, but the best results are nevertheless
obtained with 25× 25 windows.

4.8. Computational complexity

Total computation times in seconds for each method that we evaluated
in the previous section are given in Table 6 and Table 7 for training and
testing on a regular windows PC. We performed the experiments on an Intel
Pentium(R) Dual CPU T3400 machine with a 2.16 GHz CPU, 2 GB RAM
and 32 bit Windows Vista Home Premium with Service Pack 1 installed on
it. Training times are much less important than the testing times. The
dependent locations methods require the independent model result for the
initialization and score image computation, so their times are indicated with
a “+” which indicates additional time. Coarse-to-fine method is an excep-
tion to this since it is initialized in the coarsest resolution only. Note that
the search algorithms for the dependent locations model are implemented in
MATLAB. The AAM and ASM algorithms are realized using C++ imple-
mentations available as open source which are AAM-API and STASM respec-
tively. We observe that our methods require about 100 times more run-time
as compared to the STASM and 4-5 times more run-time as compared to
the AAM-API. However, since our method is implemented in MATLAB, we
expect 10-20 times speed improvement when implemented in C++. At least,

32



Table 5: Comparison of me9 errors for different window sizes.

25× 25 Independent Newton
Median 0.0494 0.0416

Maximum 0.1449 0.1623

13× 13 Independent Newton
Median 0.0563 0.0523

Maximum 0.1528 0.2585

49× 49 Independent Newton
Median 0.0603 0.0553

Maximum 0.1948 0.1895

Table 6: Total training computational time (seconds) for each dataset and
method.

Set 1 IND C2F ASM AAM
Time(s) 66.3521 492.1691 26.4 1340.3

Set 2 IND C2F ASM AAM
Time(s) 148.6111 1181.0875 32.5 2128.8

Set 3 IND C2F ASM AAM
Time(s) 310.1110 1719.6017 23.5 2931.2

some common operations such as stacking the pixels of windows around the
points to be searched could be compiled as MATLAB mex functions. This
alone will speed up the code significantly. In addition, the initial “score im-
age” computation takes the most time and that step is easily parallelizable.
We expect even more speed-up by using GPU parallel processing for that
step.

We do not argue that we can compete with running times of well-developed
and optimized ASM and AAM algorithms in this paper. For this initial study,
our goal is to show that we can get better results given enough time and re-
sources. The implementation of our algorithms in MATLAB only serves as
a research prototype for a proof of concept. Further optimization and paral-
lelization of the algorithms are planned in the future.
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Table 7: Total testing computational time (seconds) for each dataset and
method.

Set 1 IND GA NM CA C2F ASM AAM
Time(s) 924.75 +74.80 +103.98 +123.74 1159.91 10.4 424.22

Set 2 IND GA NM CA C2F ASM AAM
Time(s) 1566.87 +118.50 +209.72 +209.19 1284.34 9.5 400.77

Set 3 IND GA NM CA C2F ASM AAM
Time(s) 884.47 +54.73 +96.77 +91.75 879.11 10.1 515.52

5. Conclusions and future work

5.1. Conclusions

It is experimentally shown that our facial feature extraction methods
using both the independent model and the dependent-locations model out-
perform the AAM-API implementation of the AAM method and the STASM
implementation of the ASM method for the same experimental setup in terms
of normalized errors for most of the cases. Our algorithm is modeling the
probability distributions of facial feature locations arising from inter-subject
or inter-session differences when there are no major global pose variations.
It is critical for our algorithm that it takes as the input, the result of a good
face detector.

Dependent-locations model gives better results than independent loca-
tions model as expected. Newton optimization usually gives relatively better
results than gradient ascent optimization as it additionally takes the second
order gradients of the objective function into account. Coordinate ascent
using multiple candidates for each feature yields acceptable results but does
not perform as good as gradient-based techniques.

Coarse-to-fine search allows fine search around the found locations of
coarser resolutions. It yields lower maximum errors than other search meth-
ods when the train and test subjects are distinct, also providing a faster
search.

If the training data and test data contain similar images in terms of
illumination conditions, camera parameters and involve similar or exactly
same subjects, then our method works better due to the texture similarity
between training and test instances. This way our method can more easily
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learn the illumination and appearance variations of face images in a database.

5.2. Future work

We were able to get promising facial feature extraction results from inde-
pendent and dependent-locations assumptions offered in this work. Dependent-
locations model improves the independent one. It is in our plans to work with
more sophisticated texture parameters in the future. Using global-pose vari-
ation compensation is expected to improve our approach as well. Using color
information in addition to gray-level intensities can also improve facial fea-
ture extraction results. It may be possible to fine tune special parameters
experimentally but it would not be fair when comparing our method with
general purpose approaches like AAM. It would be an interesting idea to
quantify the database dependence of the performance of different methods in
more detail. Our method is utilized for point extraction from face images in
this work, however it is possible to use it for other purposes, such as medical
imaging as well. We envision that other probability distributions for loca-
tions and texture can be used in future work. The framework is rich enough
to admit many different models as long as efficient search algorithms can be
found for them.

6. Acknowledgements

This work has been supported by TUBITAK (Scientific and Technical
Research Council of Turkey); research support program (program code 1001),
project number 107E015.

7. References

References

[1] D. Reisfeld, Y. Yeshurun, Robust detection of facial features by gener-
alized symmetry, ICPR A (1992) 117–120.

[2] K. Sobottka, I. Pitas, Face localization and facial feature extraction
based on shape and color information, ICIP C (1996) 483–486.

[3] E. Saber, A. M. Tekalp, Frontal-view face detection and facial feature
extraction using color, shape, and symmetry based cost functions, Pat-
tern Recogn. Lett. 19 (8) (1998) 669–680.

35



[4] J.-S. Oh, D. W. Kim, J. T. Kim, Y.-I. Yoon, J.-S. Choi, Facial com-
ponent detection for efficient facial characteristic point extraction, in:
ICIAR, 2005, pp. 1125–1132.

[5] S. Jeng, H. Liao, Y. Liu, M. Chern, An efficient approach for facial
feature detection using geometrical face model, ICPR C (1998) 426–430.

[6] C. Lin, J. Wu, Automatic facial feature extraction by genetic algorithms,
IEEE Trans. Image Process. 8 (6) (1999) 834–845.

[7] M. Zobel, A. Gebhard, D. Paulus, J. Denzler, H. Niemann, Robust facial
feature localization by coupled features, in: 4th International Conference
on Automatic Face and Gesture Recognition, 2000, pp. 28–30.

[8] L. Zhi-fang, Y. Zhi-sheng, A. Jain, W. Yun-qiong, Face detection and
facial feature extraction in color image, in: Computational Intelligence
and Multimedia Applications, 2003. ICCIMA 2003. Proceedings. Fifth
International Conference on, 2003, pp. 126–130.

[9] A. Gunduz, H. Krim, Facial feature extraction using topological meth-
ods, in: Image Processing, 2003. ICIP 2003. Proceedings. 2003 Interna-
tional Conference on, Vol. 1, 2003, pp. I–673–6 vol.1.

[10] E. Bagherian, R. W. Rahmat, N. I. Udzir, Extract of facial feature point,
in: IJCSNS, 2009.

[11] S. M. Smith, A new class of corner finder, in: Proc. 3rd British Machine
Vision Conference, 1992, pp. 139–148.

[12] C. D. Hua Gu, Guangda Su, Feature points extraction from faces, in:
Image and Vision Computing NZ, 2003.

[13] M. Hess, G. Martinez, Facial feature extraction based on the smallest
univalue segment assimilating nucleus (susan) algorithm, in: in Proceed-
ings of the Picture Coding Symposium (PCS ’04), San Francisco, Calif,
USA, 2004.

[14] T. Cootes, C.J.Taylor, Active shape models - smart snakes, in: In British
Machine Vision Conference, Springer-Verlag, 1992, pp. 266–275.

36



[15] T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, Active shape
models—their training and application, Comput. Vis. Image Underst.
61 (1) (1995) 38–59.

[16] M. H. Mahoor, M. Abdel-Mottaleb, Facial features extraction in color
images using enhanced active shape model, in: FGR ’06: Proceedings
of the 7th International Conference on Automatic Face and Gesture
Recognition, IEEE Computer Society, Washington, DC, USA, 2006, pp.
144–148.

[17] Y. Li, J. H. Lai, P. C. Yuen, Multi-template asm method for feature
points detection of facial image with diverse expressions, in: FGR ’06:
Proceedings of the 7th International Conference on Automatic Face and
Gesture Recognition, IEEE Computer Society, Washington, DC, USA,
2006, pp. 435–440.

[18] S. Milborrow, F. Nicolls, Locating facial features with an extended ac-
tive shape model, in: ECCV ’08: Proceedings of the 10th European
Conference on Computer Vision, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 504–513.

[19] T. F. Cootes, G. J. Edwards, C. J. Taylor, Active appearance models,
Lecture Notes in Computer Science 1407 (1998) 484–498.

[20] T. F. Cootes, G. Edwards, C. Taylor, Comparing active shape models
with active appearance models, in: in Proc. British Machine Vision
Conf, BMVA Press, 1999, pp. 173–182.

[21] F. Tang, J. Wang, H. Tao, Q. Peng, Probabilistic hierarchical face model
for feature localization, in: WACV ’07: Proceedings of the Eighth IEEE
Workshop on Applications of Computer Vision, IEEE Computer Society,
Washington, DC, USA, 2007, p. 53.

[22] R. Niese, A. Al-Hamadi, B. Michaelis, A stereo and color-based method
for face pose estimation and facial feature extraction, in: Pattern Recog-
nition, 2006. ICPR 2006. 18th International Conference on, Vol. 1, 2006,
pp. 299–302.

[23] R. Gross, I. Matthews, S. Baker, Generic vs. person specific ac-
tive appearance models, Image Vision Comput. 23 (2005) 1080–1093.

37



doi:http://dx.doi.org/10.1016/j.imavis.2005.07.009.
URL http://dx.doi.org/10.1016/j.imavis.2005.07.009

[24] T. K. Leung, M. Burl, P. Perona, Finding faces in cluttered scenes using
random labeled graph matching (1995).

[25] M. Burl, T. K. Leung, P. Perona, Face localization via shape statistics
(1995).

[26] K. C. Yow, R. Cipolla, Feature-based human face detection, IMAGE
AND VISION COMPUTING 15 (1997) 713–735.

[27] J. Naruniec, W. Skarbek, A. Rama, Face detection and tracking in dy-
namic background of street., in: S. M. M. de Faria, P. A. A. Assuno
(Eds.), SIGMAP, INSTICC Press, 2007, pp. 414–420.

[28] J. Rurainsky, P. Eisert, Eye center localization using adaptive templates,
in: in Proc. of CVPR Workshop on Face Processing in Video (FPIV04),
Washington DC, 2004.

[29] M. Tipping, C. Bishop, Probabilistic principal component analysis
(1997).

[30] Amazon Mechanical Turk.
URL https://www.mturk.com/mturk/welcome

[31] LabelMe: The open annotation tool.
URL http://labelme.csail.mit.edu/

[32] M. B. Yilmaz, H. Erdogan, M. Unel, Probabilistic facial feature ex-
traction using joint distribution of location and texture information,
in: ISVC ’09: Proceedings of the 5th International Symposium on Ad-
vances in Visual Computing, Springer-Verlag, Berlin, Heidelberg, 2009,
pp. 1171–1180.

[33] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from
incomplete data via the em algorithm, Journal of the Royal Statistical
Society.

[34] D. C. Liu, J. Nocedal, On the limited memory bfgs method for
large scale optimization, Math. Program. 45 (3) (1989) 503–528.
doi:http://dx.doi.org/10.1007/BF01589116.

38



[35] K. Levenberg, A method for the solution of certain non-linear problems
in least squares, The Quarterly of Applied Mathematics 2 (1944) 164–
168.

[36] D. W. Marquardt, An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics 11 (2) (1963) 431–
441.

[37] D. Cristinacce, T. Cootes, Feature detection and tracking with con-
strained local models, in: 17th British Machine Vision Conference, Ed-
inburgh, UK, 2006, pp. 929–938.

[38] P. Viola, M. Jones, Rapid object detection using a boosted cascade of
simple features, in: Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, Vol. 1, 2001, pp. I–511–I–518 vol.1.

[39] U. Meier, R. Stiefelhagen, J. Yang, A. Waibel, Towards unrestricted
lip reading, International Journal of Pattern Recognition and Artificial
Intelligence (1999).

[40] M2VTS Database.
URL http://www.tele.ucl.ac.be/PROJECTS/M2VTS/m2fdb.html

[41] M. B. Stegmann, IMM Face Database.
URL http://www2.imm.dtu.dk/ aam/datasets/datasets.html

[42] The AAM-API.
URL http://www2.imm.dtu.dk/aam/aamapi/

39


