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Abstract To contrive an accurate and efficient strategy
for object detection–object track assignment problem, we
present a tracklet clustering approach using distance depen-
dent Chinese restaurant processes (ddCRPs), which employ
a two-level robust object tracker. The first level is an ordinary
tracklet generator that obtains short yet reliable tracklets. In
the second level, we cluster the tracklets over time based on
color, spatial and temporal attributes, where the nonparamet-
ric process of clustering with ddCRPs allows us to maintain
an unknown number of objects. Unlike the previously pro-
posed Chinese restaurant processes and Dirichlet process
mixture models, our ddCRPs method does not require pre-
scribed complex cluster models to be initialized and updated,
and thus, we can cluster complex tracklets by only comput-
ing similarities between them. Our comparative evaluations
on tracking different object types demonstrate the generality
of our approach.

Keywords Distance dependent Chinese restaurant
process · Tracklet clustering · Object tracking

1 Introduction

Tracking-by-detection methods generate a set of object can-
didates at each frame and assign them to existing tracks over
time. Independent from the object detector or tracker being
used, the decision criteria to assign a detection result to a track
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essentially determines the success of the tracking process.
An over-conservative criterion often dismisses the correct
assignments yielding incomplete and partitioned tracks,
whereas an over-relaxed criterion causes false assignments
that quickly lead into tangling and drift from the actual trajec-
tories. Extracting highly confident but relatively short tracks,
called tracklets, and then hierarchically merging them later
into longer andmore complete tracks is a well established [1]
solution for this dilemma. For instance, a recent study [2] on
tracklet linkage attempts to extract tracklets from face detec-
tions and group them using pairwise tracklet similarities and
hidden Markov models. However, this method requires the
number of groups, i.e., tracks, to be known a priori.

Here, we present a nonparametric tracklet clustering
approach for tracking an unknown number of objects. We
take object detection windows, construct short and reliable
tracklets, and extract color, spatial and temporal features
of tracklets. Using distance dependent Chinese restaurant
processes (ddCRPs), we cluster these tracklets. By our defi-
nition, each cluster of tracklets corresponds to a unique track
and thus a distinct trajectory of a single object over time.
A very recent work [3] builds color-based appearance mod-
els using temporally coherent Chinese restaurant processes
(CRPs) and Dirichlet process mixture models (DPMMs) to
cluster tracklets for person discovery. The difference of our
work is that we use temporal information, e.g., position
change in time, in addition to appearance information, which
enables us tracking objects without depending on complex
global cluster models. In addition, we obtain clusters using
only pairwise tracklet assignments.

In the following Sect. 2,we describe the tracklet extraction
scheme that we employ. In Sect. 3, we introduce ddCRPs and
explain the fundamental distinction of ddCRPs from CRPs
(and thus DPMMs). In Sect. 4, we present our tracklet clus-
tering scheme and discuss how we leverage the flexibility of
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ddCRPs in order to cluster tracklets efficiently. Our experi-
mental results on various datasets and object types in Sect. 5
show that ddCRPs have significant potential to be applied to
a broad class of tracking problems.

2 Tracklet generation

Any object detector can be incorporated into our method.We
also use a Gaussian mixture model-based background model
[4,5], which is suitable for stationary camera setups, to filter
out potentially false detections caused by the background.
We handle missed detections (false negatives), e.g., due to
occlusions or objects blending into background, during the
clustering stage.

We denote an object detection d: (dx , dy, du, dv, dha,
dhb) as a rectangular window centered on dx , dy with
width du and height dv and having a color distribution
characterized by two histograms dha and dhb, correspond-
ing to the Lab channels of the foreground pixels in the
window. Accordingly, we represent the parameters of a
tracklet inherited from the previous frame ( f − 1) by
φ f−1: (φ f−1

x , φ
f −1
y , φ

f −1
u , φ

f −1
v , φ

f −1
ha , φ

f −1
hb ). At a partic-

ular frame in time, a tracklet is defined by its final position,
size and accumulated color histogram values at that frame
( f ), i.e., φ

f
x ,φ

f
y ,φ

f
u ,φ

f
v are the position and size of the last

detection assigned to the tracklet, and φ
f
ha ,φ

f
hb are the accu-

mulated color histograms of all detections assigned to it
through time.

We assume that at one frame, a single object can exist
at only one location and is represented with at most one
detection. Consecutively at each frame, object detections are
either assigned to existing tracklets inherited from the pre-
vious frame based on similarity of color, location and size
features, or a new tracklet is initiated starting from the cur-
rent frame. In case a detection is assigned to a tracklet, the
position and the size of the tracklet are updated.

Accordingly, we define the affinity A(φ, d) of detection d
to the tracklet φ at frame f similar to [6] and [2] as:

A(φ, d) = N (dx |φ f −1
x , σx ) × N (dy |φ f −1

y , σy)

× N (du |φ f−1
u , σu) × N (dv|φ f −1

v , σv)

× N (S(dha, φ
f −1
ha )|0, σa)

×N (S(dhb, φ
f −1
hb )|0, σb), (1)

where N is the probability density under Gaussian distrib-
ution. The similarity operator S between two histograms is
definedusing the following sumof ratios over all B histogram
bins [7]:

S(h1, h2) = 1 − 1

B

B∑

b=1

min(h1(b), h2(b))

max(h1(b), h2(b))
. (2)

If no detections can be assigned to an existing tracklet, it
is terminated and removed from the current set � of track-
lets that is used to assign new detections D on the following
frames. In the end, a tracklet is defined by the sequence of
position and size values (i.e., sequences of φx , φy, φu, φv) of
the constituting detections and accumulated color histogram
values (i.e., accumulated φha and φhb) over time.

To prevent ambiguity and drifts, wemake sure that a detec-
tion is assigned to a tracklet if the affinity score is significantly
greater than the affinities to all other tracklets. Even after this,
only the detection with the best affinity score is assigned to
a tracklet.

We aim to filter out false detections during and after track-
let extraction. Before assigning detections to tracklets, we
eliminate detections that do not have any foreground pix-
els, as illustrated in Fig. 1a. We also learn the regions of
the scene that produce false detections by an online process
where we eliminate and keep the record of detections that
lasted only for a single frame without being assigned to a
tracklet.After a regionproduces such single-framedetections
for κA number of times, we begin to eliminate detections
from that region as well, as shown in Fig. 1b. These two
simple elimination schemes help us to filter out false detec-
tions during tracklet generation and prevent possible local
drifting.

After tracklets are generated, we calculate spatial neigh-
borhood statistics for detections that constitute the tracklets
at every frame. For each detection d, we gather all detec-
tions from all frames that intersect with d window to form
the neighborhood Nd. For detections in Nd, we calculate

Fig. 1 Sample detections and tracklets that have been filtered out
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two statistics: Ñd, the median height of the detections, and
|Nd|, the number of detections. Using these statistics, we
filter out tracklets: (i) all detections of which are at least
κs times greater in height than the median of their neigh-
borhoods (e.g., green rectangle in Fig. 1c) and (ii) average
number of neighbors of the detections of which are smaller
than a ratio κd of the total number of frames in the sequence
(e.g., Fig. 1d). Using a local size statistic rather than a
global size heuristic as in (i) allows us to apply a per-
spective invariant size filtering to the detections, and using
the number of neighbors as in (ii) allows us to filter out
detections which are likely to be outliers as they appear in
the areas of the scene with a low overall object detection
likelihood.

We finally remove the tracklets, all detections of which
intersect with a larger detection by at least half of their own
area, since they usually are false detections for parts of an
object (e.g., blue rectangle in Fig. 1c).

The overall pseudocode for tracklet generation is pre-
sented in Algorithm 1.

Input: For frame f = 1, . . . , F
D f detections, BG f background for f
Result: � = {φ1, φ2...} set of tracklets
� ← {} , FD ← {}
for f ∈ {1...F} do

for d ∈ D f = {d1, d2...} do
// Background or false detections
if BG f (d) = 1 or FD(d) ≥ κA then

D f ← D f − {d}
else

� ⇐ d // Update � using Eq. (1)
end

end
// Update false detection areas
for φ ∈ � do

if φ f = ∅ and Length(φ) = 1 then
� ← � − {φ}
FD(φ f −1) = FD(φ f −1) + 1

end
end

end
// Post process and filter tracklets
for φ ∈ � and d ∈ φ do

Nd ← {} , C ← {}
for φn ∈ � and dn ∈ φn do

if Area(d ∩ dn) > 0 then
Nd ← Nd ∪ {dn}
if SameFrame(d, dn) and

Area(d ∩ dn) ≥ 0.5 · Area(d) then
C ← C ∪ dn

end
end

end
if dv/Ñd > κs or avg(|Nd |)/F < κd or d ∈ C

∀d ∈ φ then
� ← � − {φ}

end
end

Algorithm 1: Algorithm for tracklet extraction

3 Distance dependent Chinese restaurant processes

DPMMs and CRPs, as well as ddCRPs, are statistical tools
for nonparametric clustering of data. In this section, we sum-
marize their basic aspects and present our motivation behind
employing ddCRPs.

3.1 DPMMs and CRPs

DPMMs provide a way to model a set of observation data
as a mixture of unknown number of distributions having the
same form G(θ), called as the base distribution [8]. DPMM
clustering task assumes an infinite number ofmixture compo-
nents exist, but with only a finite subset of these components
having data assigned to them. In other words, DPMMs regard
the task of clustering as finding the parameters of those finite
and unknown number of mixture components.

Suppose the data to be clustered are {Xn|n = 1 . . . N }.
For Xn ∈ k, Xn ∼ G(θk), i.e., observations are distributed
according to the parameters of the mixture components that
they are assigned to, where θk denotes parameters of the kth
mixture component. A common application of DPMMs is to
take G(θ) as a Gaussian distribution, where θ in this case
defines the distribution parameters μ and σ .

Methods such as Gibbs sampling are widely used [9] for
DPMMs.Gibbs samplinghandles all observations iteratively,
and for each observation, it computes the probability of an
assignment to an existing or new cluster with:

p(cn = k|Xn, c−n, α, θ)

∝
{
Nk × p(Xn|θk) k ≤ K

α ×
∫

θ
p(Xn|θ) dθ k = K + 1

(3)

where cn = k denotes Xn ∈ k, c−n denotes all assignments
except nth, Nk is the number of assignments to cluster k, K
is the number of existing clusters before the new assignment
and α is a control parameter whose higher values result in
more clusters.

For both conditions, the assignment prior of Eq. (3), i.e.,
left of p(Xn|θ) cluster likelihood, differs only on Nk and α.
That is, the more observations are assigned to a cluster, the
more probable a new observationwill be assigned to it. These
conditions and the infinite number of components assumption
mentioned above bear the CRPs analogy [10], where a Chi-
nese restaurant with an infinite number of tables without any
capacity limit is considered. Each new customer chooses a
table with existing customers, probability of which is pro-
portional to the number of previous customers sitting at that
table (proportional to Nk), or chooses to sit down at a new
table with a fixed probability (proportional to α). Increas-
ing α results in more occupied tables with fewer customers
or few tables with more customers vice versa. Since each
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customer can sit at one table, the customers are partitioned
across tables (clusters).

DPMM-based clustering has recently received attention
for object tracking in computer vision literature. In [11], the
tracked objects themselves are modeled as mixture compo-
nents, and the parameters of these components at a particular
time (i.e., frame) are selected as visual features including
color, size and position of the tracked objects.

3.2 Distance dependent CRPs

Continuing with the restaurant analogy, ddCRP [12] seeks
assignments between customers (i.e., observations) only. As
a result, a new arriving customer chooses to sit down with
an existing customer (consecutively at the same table) or
by itself. Thus, customers that choose to sit down together,
either directly or indirectly through another customer, con-
stitute a table. In other words, observations that are assigned
to each other directly or indirectly through other observa-
tions, constitute a cluster. Under this analogy, the Gibbs
sampling probability used to sample observation assignments
becomes:

p(ci = j |X, c−i , α, F)

∝
{
F(Xi , X j ) × p(X |z(c)) i = j
α × p(X |z(c)) i = j

(4)

where c−i denotes all assignments except i th, ci = j denotes
that Xi is linked to (thusassigned to the same clusterwith) X j

and the assignment prior is proportional to F(Xi , X j ), which
is the similarity measure between these two. Notice that no
explicit cluster parameters are defined like θk in Eq. (3).

The z(c) term, where c = ci ∪ c−i , denotes the structure
of the underlying clusters after assignment of ci , and it is
used to calculate the cluster likelihood for all observations
X . In [12], different configurations of observation assign-
ments at each Gibbs sampling step for a single observation
are considered. We leave the discussion of this likelihood to
the following section, where we define our likelihood within
our application.

The similarity function F(Xi , X j ) is defined between
observations. Often a decay function of an exponential form
[12], which is applied on the distance, is employed. We dis-
cuss the selection of our similarity function and howwe build
it around the features that we define in the following section
as well.

4 Tracklet clustering with ddCRPs

The main contribution of our work is the clustering scheme
that groups the tracklets extracted in Sect. 2 into tracks using
ddCRPs. Within this definition and the ddCRP clustering

framework, tracklets are observations and tracks are clusters.
We denote a single tracklet/observation with φi and the set
of all tracklets with � as in Sect. 2, rather than Xi and X
as in Sect. 3. The reason we prefer ddCRPs over CRPs and
DPMMs is the flexibility of integrating a custom similarity
function F(φ1, φ2) between tracklets φ1 and φ2 in Eq. (4)
directly into the clustering process.

We use a similarity function that takes the changes of
position, size and color features of tracklets over time into
account. Within a DPMM framework, this would not be pos-
sible since it would not be easy to integrate a mixture model
that covers such a custom likelihood. In other words, instead
of defining a complex cluster model and assigning tracklets
to clusters as well as updating cluster parameters at each
assignment, we only define and calculate tracklet similari-
ties once and obtain the clusters automatically by using the
tracklet assignments.

4.1 Extracting features

The tracklets to be clustered are defined by vectors that hold
historical information of position and size, and aggregated
color information; i.e.,φ:(x, y,u, v, f,ha,hb), where f is the
vector of frame numbers when the tracklet is visible. x, y, u
and v are vectors of same length with f and hold position and
size information of the tracklet at each frame. ha and hb are
normalized histograms with fixed bin numbers accumulated
over all frames.

4.2 Tracklet similarity

We use a pairwise similarity function based on the proba-
bility of two tracklets belonging to the same tracked object.
With the assumption that at one frame one object is repre-
sented with at most one detection, we set similarity as zero
for temporally overlapping tracklets.

For two non-overlapping tracklets φ1 and φ2, let tracklet
φ1 be the former one and visible between frames f s1 and
f e1 , i.e., f1 = { f s1 , f s1 + 1 . . . f e1 − 1, f e1 } and φ2 between
frames f s2 and f e2 and f e1 < f s2 and δ12 = f s2 − f e1 where
δ12 > 0. Here, x1 is a vector of the same length with f1,
having values x1 = {x f s1

, x f s1 +1 . . . x f e1 −1, x f e1
} denoting x-

coordinates. Similarly, y1, u1 and v1 denote y-coordinates,
width and height of the tracklet φ1 over time, respectively.
Same set of vectors are also extracted for tracklet φ2. ha,1,
hb,1, ha,2 and hb,2 denote the color histograms of φ1 and φ2,
accumulated between frames f s1 and f e1 (for φ1) and f s2 and
f e2 (for φ2).
We obtain two similarities: F12, similar to [2], which seeks

the probability that φ2 is similar to φ1 when extrapolated to
the same time that φ2 is visible, and F21, vice versa.

For F12, we linearly extrapolate four values: x̂ f s2
which is

the x value at f s2 extrapolated from the vector x1; ŷ f s2
from
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y1; û f s2
from u1; and v̂ f s2

from v1. Similarly, for F21, we
extrapolate the corresponding values x̂ f e1

from x2, ŷ f e1
from

y2, û f e1
from u2 and v̂ f e1

from v2.
Then, we define the likelihood F12, which yields higher

values where the extrapolated and observed sizes and posi-
tions for two tracklets are close (with the variances being
proportional to the size of the object), histograms are simi-
lar, and the tracklets are closer temporally, as:

F12(φ1, φ2) = N (x f s2
|x̂ f s2

, u f e1
) × N (y f s2

|ŷ f s2
, v f e1

)

×N (u f s2
|û f s2

, 0.1 · u f e1
)

×N (v f s2
|v̂ f s2

, 0.1 · v f e1
)

×N (S(ha,1, ha,2)|0, σa)
×N (S(hb,1, hb,2)|0, σb)
×N (δ12|0, f e1 − f s1 ), (5)

where S is defined in Eq. (2). We calculate F21(φ1, φ2) sim-
ilar to Eq. (5) for the other set of extrapolated and observed
values and define the final similarity value as:

F(φ1, φ2) =
{
max(F12, F21) F12 > ε and F21 > ε

0 otherwise
(6)

Equation (5) does not impose tracklets to be sequential,
and thus, occlusion handling is implicitly integrated into the
model through the tracklet similarity function since we can
assign non-sequential tracklets to each other and potentially
cover the missed detections in-between.

4.3 Cluster likelihood

The assignment prior F(φi , φ j ) of Eq. (4) can be obtained as
in Eq. (6), but we also need to define our cluster likelihood
term p(�|z(c)). The z(c) term denotes the cluster structure
after assignment of ci . We impose a hard limit on the clus-
ter likelihood to prevent overlapping tracklets to constitute a
cluster. It is necessary to check the overlap after every assign-
ment, since even though the tracklets that are assigned to each
other with ci may not overlap, their newly formed cluster
may contain members that overlap each other. Let P(c) be
the set of all directly and indirectly connected tracklet pairs
implied by assignments c, then the likelihood is proportional
to:

p(�|z(c)) ∝
{
1 if ∀(φi , φ j ) ∈ P(c); fi ∩ fj = ∅
0 otherwise

(7)

4.4 Gibbs sampling and cluster/track outputs

For ease of implementation and in order to speed up like-
lihood calculations, before applying Gibbs sampling, we
construct a similarity matrix M (similar to [2]) where Mi j =
F(φi , φ j ) from Eq. (6), which is symmetric and values for
the overlapping tracklets are zero. These tracklet similarities
are calculated once, and same values (of Mi j = F(φi , φ j ))
are used during clustering, since similarities of tracklet pairs
do not change.

We iteratively perform Gibbs sampling of tracklet assign-
ments (to another tracklet) using Eqs. (4) and (7) and the
similarity matrix M . At any time of Gibbs sampling, a clus-
ter is defined by tracklets that have been assigned to each
other directly or indirectly. After each sampling of a new
assignment, previous clusters can be split and/or merged
depending on the change of assignment [12]. At the end of
Gibbs sampling iterations, we obtain tracklet assignments
and clusters/tracks as a byproduct of those.

Since tracklets clustered into a track do not overlap by our
definition (because similarities of overlapping tracklets are
zero), we output each track by simply ordering the tracklets
assigned to it with respect to their timestamp and interpolate
for the missing frames accordingly.

The overall pseudocode for tracklet clustering is presented
in Algorithm 2.

Input: � = {φ1, φ2...} set of tracklets
Result: C = {c1, c2...} clusters of tracklets, i.e., tracks
// C(φi ) denotes cluster that φi belongs to
C(φi ) = i ∀i , M ← [ ]
for φ1 ∈ � do

for φ2 ∈ � do
if φ1 ∩ φ2 = ∅ then

M[φ1, φ2] = M[φ2, φ1] ← 0
else

M[φ1, φ2] = M[φ2, φ1] ← F(φ1, φ2)

// Eq. (5)
end

end
end
for φi ∈ � do

Sample ci ∝ p(ci |�, c−i , α, M) // Eq. (4)
if ci = i then

C(φi ) = i
else

C(φi ) = C(φci )

end
for φk ∈ � do

C(φk) = C(φck ) // Update assignments
end

end
Algorithm 2: Algorithm for tracklet clustering

5 Experiments

We present experimental results on many video sequences
from PETS 2009 [13] (person tracking), TownCentre [14]
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Fig. 2 Samples from PETS 2009 S2-L1,12-34,View-1

(person tracking), SPEVI [15] (face tracking), TUD Stad-
mitte [16] (person tracking) and ETH [17] (person tracking
with moving cameras) datasets.

For tracklet extraction, we use the same object detection
outputs with the previous work that we compare our results
with in order to perform an unbiased comparison. For SPEVI,
we run Haar-like feature-based face detector [18]. We use
C# using EmguCV library [19,20]. The code for the overall
implementation is available online.1

We use the same parameter values for all datasets during
tracklet extraction, and we report our clustering results using
α values that give the best results for each dataset.

In Figs. 2 and 3, we show sample visual results. We
indicate the final clustering/tracking results with distinctly
colored and numerically labeled rectangles. At each frame,
we also present the trail of the tracklet that constitutes the rel-
evant track for that frame—or no trail if that location was not
captured by a detection or a tracklet, and interpolated instead.
An example of a single object tracked by many clustered
tracklets is the person labeled as 14 and entered the scene
from right in Fig. 2a. In Fig. 2c, e, f, trails of the three distinct
tracklets, which are eventually clustered into the same track
(since they belong to the same labeled person), can be seen
clearly. Likewise, persons labeled as 13 (compare Fig. 2b, c)
and 15 (compare Fig. 2d, f) had been trackedwith at least two
distinct tracklets before being clustered into tracks. Examples
of total occlusion can be seen in Fig. 2d for the person labeled

1 http://students.sabanciuniv.edu/~isaygint/sivp15.

Fig. 3 Sample frames from SPEVI frontal face

as 14, Fig. 2e for the person labeled as 9, Fig. 3b for the face
labeled as 6 and Fig. 3c for the face labeled as 4. For all four
examples, no tracklets for the tracked objects exist at those
frames; however, the tracking processes are not interrupted
and continue with the same label.

In Table 1, we give our numerical results and comparisons
with the results of [21] for PETS, of [14] for TownCentre,
of [3] for SPEVI and of [22] for TUD Stadmitte and ETH
datasets using the same ground truths. We report the number
of mostly tracked (MT), partially tracked (PT), and mostly
lost tracks (ML) [23], maximum online tracking accuracy
(MOTA) [24] and precision / recall values [25] using the
implementation of [21]. In addition, compared results (rows
with cited work) and results obtained with our proposed
tracklet clustering scheme (rows with Proposed), we also
present results for each dataset using only extracted track-
lets in Sect. 2 (rows with Tracklets) without applying the
proposed clustering scheme in order to present the improve-
ment introduced by the proposed tracklet clustering scheme.
In addition, we show results using clustering results obtained
with the tracklet similarity function without the spatial com-
ponents (i.e., without x , y, u and v in Eq. (5) in rows with
No spatial) in order to emphasize the importance of the sim-
ilarity function and the advantage of our proposed spatial
similarity.

We ran our overall tracking algorithm on SPEVI frontal
sequence also using face detections of [2] and comparedwith
the ground truth of the same work and able to track all nine
tracks in their ground truth with only one identity switch–as
opposed to their fivemostly tracked tracks with ten switches.

We obtain MOTA results with different α values as shown
in Fig. 4. For higher α values, the results converge to the val-
ues inTable 1where only tracklets are usedwithout clustering
(rows with Tracklets), which makes sense since by defini-
tion in Eq. (4), higher α values yield in more clusters (i.e.,
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Table 1 Tracking results on different datasets

Prec. Recl. MT PT ML MOTA

PETS 2009 S2-L1 12-34 View 1

[21] 90.8 93.5 18 1 0 83.5

Tracklets 94.2 86.9 16 3 0 78.8

No spatial 92.6 87.5 16 3 0 78.0

Proposed 92.6 92.4 18 1 0 84.5

TownCentre

[14] 82.0 79.0 – – – 61.3

Tracklets 88.0 71.2 92 114 24 59.2

No spatial 85.2 71.7 94 112 24 56.9

Proposed 84.2 78.9 127 87 16 63.5

TUD Stadtmitte

[22] 96.7 87.0 7 3 0 –

Tracklets 96.7 78.0 6 4 0 72.2

No spatial 90.6 84.4 7 3 0 73.6

Proposed 93.3 88.3 9 1 0 80.8

ETH (Bahnoff and Sunnyday)

[22] 90.4 79.0 85 31 9 –

Tracklets 91.3 65.7 47 65 12 56.1

No spatial 90.0 64.8 47 66 11 54.1

Proposed 86.9 73.6 63 51 10 61.2

SPEVI frontal face

[3] 98.0 78.2 0 4 0 75.8

Tracklets 97.6 84.5 4 0 0 81.1

No spatial 93.5 91.3 4 0 0 84.5

Proposed 96.9 91.9 4 0 0 88.7

Fig. 4 Change of MOTA with different α values

observations assigned to themselves) eventually yielding no
practical clustering where every observation is a cluster by
itself alone. For lower α values, where proposed clustering

scheme is practically in effect, the results do not changemuch
between different α values which shows that the algorithm
is robust to the α parameter.

With an Intel Xeon 2.40GHz CPU, excluding image
I/O and object detections, our algorithm including track-
let extraction and clustering runs at 50FPS for TUD and
ETH sequences being∼5× faster than [22], and 100FPS for
SPEVI sequence being ∼10× faster than [3].

6 Conclusions and future work

Wepresented a tracklet clustering-based object trackerwhich
is robust to occlusions, misses and short tracking errors. We
demonstrated qualitative visual results and compared with
the state- of-the-art methods. Our main contribution is the
tracklet clustering scheme, which does not depend on how
the tracklets are extracted or what kind of object detectors
are used to extract the tracklets. We define color, spatial and
temporal features of tracklets in our work, but the set of fea-
tures can easily be extended by integrating new features into
the tracklet similarity (Eq. 5).

Our results are superior or competitive with state-of-the-
art methods except ETH datasets, which may indicate that
the proposed algorithm is rather more suitable for stationary
cameras. The main advantage of our method is the simplicity
of the clustering algorithm, which does not require training
complexmodels or optimizations. This results in the speed of
the proposed method being much higher than the compared
work. Precision values being higher than the recall in almost
all of our results indicate misses during frames, investigation
of which is left as future work.

Thanks to their flexible nature, ddCRPs are a promising
tool for nonparametric clustering problems where the clus-
ters are complex and cannot be easily modeled by general
probabilistic models. Since the tracklet similarities are being
calculated once and same similarity values are being used in
Gibbs sampling iterations, the speedof the clusteringprocess,
even without any special optimization or parallelization, is
quite high.

Our algorithm do not use any scene information or seman-
tic tracking, which is still an area for improvement [26]. In
the future, we aim for a system that can learn its optimal
parameters (like α) from a few training scenes, which will
increase the usability of the proposed method without taking
run-time parameters into consideration.
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