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Abstract

The main principle of stacked generalization is using a second-level gener-

alizer to combine the outputs of base classifiers in an ensemble. In this

paper, after presenting a short survey of the literature on stacked generaliza-

tion, we propose to use regularized empirical risk minimization (RERM) as a

framework for learning the weights of the combiner which generalizes earlier

proposals and enables improved learning methods. Our main contribution

is using group sparsity for regularization to facilitate classifier selection. In

addition, we propose and analyze using the hinge loss instead of the con-

ventional least squares loss. We performed experiments on three different

ensemble setups with differing diversities on 13 real-world datasets of vari-

ous applications. Results show the power of group sparse regularization over

the conventional l1 norm regularization. We are able to reduce the number

of selected classifiers of the diverse ensemble without sacrificing accuracy.
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With the non-diverse ensembles, we even gain accuracy on average by using

group sparse regularization. In addition, we show that the hinge loss out-

performs the least squares loss which was used in previous studies of stacked

generalization.
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1. Introduction1

Classifier ensembles aim to increase the efficiency of classifier systems in2

terms of accuracy at the expense of increased complexity and they are shown3

to obtain greater performance than single-expert systems for a broad range4

of applications. Among all theoretical and practical reasons to prefer using5

ensembles, which are categorized as statistical, computational and represen-6

tational in [7], the most important ones are the statistical reasons. Since7

we are looking for the generalization performance (error in the test data) in8

pattern recognition problems, it is often very difficult to find the “perfect9

classifier”, but by combining multiple classifiers, probability of getting closer10

to the perfect classifier is increased. An ensemble may not always beat the11

performance of the best single classifier obtained, but it will surely decrease12

the variance of the classification error. Some other reasons besides statistical13

reasons can be found in [7, 20].14

The straightforward method to obtain an ensemble is using different clas-15

sifier types or different parameters. Also training base classifiers with differ-16

ent subsets or samplings of data or features is used to obtain more diverse17
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ensembles. In this work, we are not interested in the methods of obtaining18

the ensemble, but we investigate various linear combination types for a given19

set of base classifiers.20

Base classifiers produce either label outputs or continuous valued outputs.21

For the former, combiners like majority voting or weighted majority voting22

are used. In the latter case, base classifiers produce continuous scores for23

each class that represent the degree of support for each class. They can be24

interpreted as confidences in the suggested labels or estimates of the posterior25

probabilities for the classes [13]. In this paper, we deal with the combination26

of continuous valued outputs.27

Combination rules can be grouped into trainable vs. non-trainable. Learn-28

ing the combiner from training data is shown to give better accuracy than29

non-trainable combiners. Among trainable combiners, such as stacked gen-30

eralization (stacking) [33], decision templates [13] and Dempster-Shafer com-31

bination [22]; stacked generalization is deeply investigated and analyzed in32

the literature [33, 29, 14, 28, 24, 18, 5, 25, 21, 30, 16].33

1.1. Stacked Generalization34

The idea of stacking is to use the confidence scores that are obtained from35

base classifiers as attributes in a new training set keeping the original class36

labels and training a meta-classifier with this new dataset. Linear meta-37

classifiers have speed and complexity advantage over non-linear ones and are38

usually preferred in the literature. When initially introduced, stacking is used39

to combine the class predictions of the base classifiers [33]. Ting & Witten40

used confidence scores of base classifiers as input features and improved stack-41

ing’s performance [29, 28]. Merz used stacking and correspondence analysis to42
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model the relationship between the learning examples and their classification43

by a collection of learned models and used nearest neighbor classifier as the44

meta learner [18]. A pool of representations obtained by a genetic algorithm45

is used to train different classifiers in [19], which are then combined by vote46

rule. Dzeroski & Zenko used multi-response model trees as the meta-learner47

[5]. Seewald introduced stackingC, which improves stacking’s performance48

further and reduces the computational cost by introducing class-conscious49

combination [24]. Sill incorporated meta-features with the posterior scores50

of base classifiers to improve accuracy [25]. Ledezma, used genetic algorithms51

to search for good stacking configurations [16]. Tang, re-ranked all possible52

class labels according to the scores and obtained a learner which outperforms53

all base classifiers [27].54

Since training the base classifiers and the combiner with the same data55

samples will result in overfitting, a sophisticated cross-validation approach56

is applied to obtain the training data of the combiner (level-1 data). This57

procedure, called internal cross-validation, is described in section 2. After58

obtaining level-1 data, there are two main problems remaining for a linear59

combination: (1) Which type of combination method should be used? (2)60

Given a combination type, how should we learn the parameters of the com-61

biner? For the former problem, Ueda [31] defined three linear combination62

types namely type-1, type-2 and type-3; for which, we use the descriptive63

names: weighted sum (WS), class-dependent weighted sum (CWS) and lin-64

ear stacked generalization (LSG) respectively, and investigate all of them.65

LSG is used in [14, 28], and CWS combination is proposed in [29, 24]. For66

the second main problem described above, Ting & Witten proposed a multi-67
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response linear regression algorithm for learning the weights [29]. Ueda in [31]68

proposed using minimum classification error (MCE) criterion for estimating69

optimal weights, which increased the accuracies. MCE criterion is an approx-70

imation to the zero-one loss function which is not convex, so finding a global71

optimizer is not always possible. Ueda derived algorithms for different types72

of combinations with MCE loss using stochastic gradient methods. Both of73

these studies ignored “regularization” which has a huge effect on the perfor-74

mance, especially if the number of base classifiers is large. Reid & Grudic in75

[21] regularized the standard linear least squares estimation of the weights76

with CWS and improved the performance of stacking. They applied l2 norm77

penalty, l1 norm penalty and linear combination of the two (elastic net re-78

gression). In this work, we propose maximum margin algorithms for learning79

the optimal weights. We work with the regularized empirical risk minimiza-80

tion framework [15] and use the hinge loss function with l2 regularization,81

which corresponds to the support vector machines (SVM). We do not derive82

optimization algorithms for the solutions of the minimization problems, but83

state-of-the-art solutions of SVM in the literature can be modified for our84

problem.85

1.2. Sparse Combination86

Another issue, recently addressed in [34], is combination with a sparse87

weight vector so that we do not use all classifiers in the ensemble. Since88

we do not have to use classifiers which have zero weight on the test phase,89

overall test time will be much less. Zhang formulated this problem as a linear90

programming problem for only the WS combination type [34]. Reid used l191

norm regularization for CWS combination [21]. In this paper, we investigate92
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sparsity issues for all three combination types: WS, CWS and LSG. We use93

both l1 norm and l1 − l2 norm for regularization in the objective function94

for CWS and LSG. Latter regularization results in group sparsity, which is95

deeply investigated and successfully applied to various problems recently [17].96

1.3. Organization of the Paper97

Throughout the paper, we used m for the classifier subscript, n for the98

class subscript, i for the data instance subscript, M , N and I for the number99

of classifiers, classes and data instances respectively. Datapoint subscript i is100

sometimes dropped for simplicity. In Section 2 we explain the cross-validation101

technique used in stacked generalization. In Section 3, we define the classifier102

combination problem formally and define three different combination types103

used in the literature, namely WS, CWS and LSG. In Section 4, we explain104

how the weights are learned using regularized empirical risk minimization105

framework with hinge loss and a regularization function. In Section 5, we106

define sparse regularization functions to enable classifier selection. In Section107

6, the experimental setups are described. In Section 7, we present the results108

of our experiments and discuss them. Section 8 finishes the paper with109

concluding remarks.110

2. Internal Cross Validation111

The basic idea of stacking is applying a meta-level (or level-1) generalizer112

to the outputs of base classifiers (or level-0 classifiers). For training the level-113

1 generalizer, we need the confidence scores (level-1 data) of the training114

data, but training the combiner with the same data instances which are115

used for training the base classifiers will lead to overfitting the database116
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and eventually result in poor generalization performance. So we should split117

the dataset into two disjoint subsets for training the base classifiers and the118

combiner. But this partitioning leads to inefficient usage of the dataset.119

Wolpert deals with this problem by a sophisticated cross-validation method120

(internal CV), in which training data of the combiner is obtained by cross121

validation [33]. In k-fold cross-validation, training data is divided into k parts122

and each part of the data is tested with the base classifiers that are trained123

with the other k−1 parts of data. So at the end, each training instance’s score124

is obtained from the base classifiers whose training data does not contain that125

particular instance. This procedure is repeated for each base classifier in the126

ensemble. We apply this procedure for the three different linear combination127

types.128

3. Combination Types129

3.1. Problem Formulation130

In the classifier combination problem with confidence score outputs, input131

to the combiner are the posterior scores belonging to different classes obtained132

from the base classifiers. Let pnm be the posterior score of class n obtained133

from classifier m for any data instance. Let pm = [p1m, p
2
m, . . . , p

N
m]T , then134

the input to the combiner is f = [pT
1 ,p

T
2 , . . . ,p

T
M ]T , where N is the number135

of classes and M is the number of classifiers. Outputs of the combiner are N136

different scores representing the degree of support for each class. Let rn be137

the combined score of class n and let r = [r1, . . . , rN ]T ; then in general the138

combiner is defined as a function g : RMN → RN such that r = g(f). Let I139

be the number of training data instances, fi contain the scores for training140
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data point i obtained from base classifiers with internal CV and yi be the141

corresponding class label; then our aim is to learn the g function using the142

data {(fi, yi)}Ii=1. On the test phase, label of a data instance is assigned as143

follows:144

ŷ = arg max
n∈[N ]

rn, (1)

where [N ] = {1, . . . , N}. Among combination types, linear ones are shown145

to be powerful for the classifier combination problem. For linear combiners,146

the g function has the following form:147

g(f) = Wf + b. (2)

In this case, we aim to learn the elements of W ∈ RN×MN and b ∈ RN .148

So, the number of parameters to be learned is MN2 + N . This type of149

combination is the most general form of linear combiners and called type-3150

combination in [31]. In the framework of stacking, we call it linear stacked151

generalization (LSG) combination. One disadvantage of this type of combi-152

nation is that, since the number of parameters is high, learning the combiner153

takes a lot of time and may require a large amount of training data. To154

overcome this disadvantage, simpler but still strong combiner types are in-155

troduced with the help of the knowledge that pnm is the posterior score of156

class n. We call these methods weighted sum (WS) rule and class-dependent157

weighted sum (CWS) rule. These types are categorized as class-conscious158

combinations in [13].159

3.2. Linear Combination Types160

In this section, we describe and analyze three combination types, namely161

weighted sum rule (WS), class-dependent weighted sum rule (CWS) and linear162
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stacked generalization (LSG) where LSG is already defined in (2).163

3.2.1. Weighted Sum Rule164

In this type of combination, each classifier is given a weight, so there are165

totally M different weights. Let um be the weight of classifier m, then the166

final score of class n is estimated as follows:167

rn =
M∑

m=1

ump
n
m = uT fn , n = 1, . . . , N, (3)

where fn contains the scores of class n: fn = [pn1 , . . . , p
n
M ]T and u = [u1, . . . , uM ]T .168

For the framework given in (2), WS combination can be obtained by letting169

b = 0 and W to be the concatenation of constant diagonal matrices:170

W = [u1IN | . . . |uMIN ], (4)

where IN is the N ×N identity matrix. We expect to obtain higher weights171

for stronger base classifiers after learning the weights from the database.172

3.2.2. Class-Dependent Weighted Sum Rule173

The performances of base classifiers may differ for different classes and it174

may be better to use a different weight distribution for each class. We call175

this type of combination CWS rule. Let vnm be the weight of classifier m for176

class n, then the final score of class n is estimated as follows:177

rn =
M∑

m=1

vnmp
n
m = vT

n f
n , n = 1, . . . , N, (5)

where vn = [vn1 , . . . , v
n
M ]T . There are MN parameters in a CWS combiner.178

For the framework given in (2), CWS combination can be obtained by letting179
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b = 0 and W to be the concatenation of diagonal matrices; but unlike in180

WS, diagonals are not constant:181

W = [W1|W2| . . . |WM ], (6)

where Wm ∈ RN×N are diagonal for m = 1, . . . ,M .182

3.2.3. Linear Stacked Generalization183

This type of combination is the most general form of supervised linear184

combinations and is already defined in (2). With LSG, score of class n is185

estimated as follows:186

rn = wT
n f + bn , n = 1, . . . , N, (7)

where wn ∈ RMN is the nth row of W and bn is the nth element of b. LSG187

can be interpreted as feeding the base classifiers’ outputs to a linear multi-188

class classifier as a new set of features. This type of combination may result189

in overfitting to the database and may yield lower accuracy than WS and190

CWS combination when there is not enough training data. From this point191

of view, WS and CWS combination can be treated as regularized versions of192

LSG. A crucial disadvantage of LSG is that the number of parameters to be193

learned is MN2 +N which will result in a long training period.194

There is not a single superior one among these three combination types195

since results are shown to be data dependent [8]. A convenient way of choos-196

ing the combination type is selecting the one that gives the best performance197

in cross-validation.198
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4. Learning the Combiner199

We use the regularized empirical risk minimization (RERM) framework200

[15] for learning the weights. In this framework, learning is formulated as an201

unconstrained minimization problem and the objective function consists of202

a summation of empirical risk function over data instances and a regulariza-203

tion function. Empirical risk is obtained as a sum of “loss” values obtained204

from each example. In general, we want to minimize the following objective205

function:206

φ(W,b) =
1

I

I∑
i=1

N∑
n=1

L(fi, yi, n,wn) + λR(W). (8)

where, L is the loss function. Different choices of loss functions and regu-207

larization functions correspond to different classifiers. Using the hinge loss208

function with l2 norm regularization is equivalent to support vector machines209

(SVM). It has been shown in studies that the hinge loss function yields much210

better classification performance as compared to the least-squares (LS) loss211

function in general. Earlier classifier combination literature uses LS loss func-212

tion [29, 28, 21], which is less favorable as compared to the hinge loss that213

we promote and use in this paper. Least-squares loss function is as follows:214

L(fi, yi, n,w) = (s(yi, n)− fTi wn − bn)2, (9)

where s(yi, n) = 1 if yi = n, −1 otherwise and bn is the nth element of b.215

Instead of the s function, we can use the δ(yi, n) which is zero if yi 6= n instead216

of −1. LS loss function forces the true class’ scores to be one and wrong217

classes’ scores to be zero or −1. This problem can be seen as a regression218

problem. Using least-squares with l2 regularization is equivalent to applying219

least-squares support vector machine (LS-SVM) [26] to the level-1 data.220

11



As mentioned above, we promote to use the hinge loss function for the221

combiner. Using the hinge loss function with the l2 norm regularization is222

equivalent to using Support Vector Machine classifier. SVMs were originally223

designed for binary classification and there are a lot of ongoing research on224

how to effectively extend it for multiclass classification. We use the method225

defined by Crammer and Singer [3]. With this method, we find the linear226

separating hyper-plane that maximizes the margin between true class and227

the most offending wrong class. When we apply this idea to our problem, we228

obtain the following unconstrained minimization problem for LSG:229

φLSG(W,b) =
1

I

I∑
i=1

(1− ryii (W) + max
n6=yi

rni (W))+ + λRLSG(W), (10)

where RLSG(W) is the regularization function, (x)+ = max(0, x) and rni (W)230

is the posterior score of data instance i for class n with the combiner W:231

rni (W) = wT
n fi + bn. (11)

λ ∈ R in (10) is the regularization parameter which is usually learned by232

cross validation. The objective function given in (10) encourages the distance233

between the true class’ score and the most offending wrong class’ score to234

be larger than one. A conventional regularization function is the Frobenius235

norm of W:236

RLSG(W) = ||W||2F =
N∑

n=1

||wn||22, (12)

Equation (10) is given for LSG but it can be modified for other types of237

combinations using the unifying framework described in [8]. But we also238

give objective functions for WS and CWS explicitly. The objective function239
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for WS is as follows:240

φWS(u) =
1

I

I∑
i=1

(1− uT fyii + max
n6=yi

(uT fni ))+ + λRWS(u). (13)

For regularization, we use the l2 norm of u: RWS = ||u||22. For CWS, we241

have the following objective function:242

φCWS(V) =
1

I

I∑
i=1

(1− vT
yi
fyii + max

n6=yi
(vT

n f
n
i ))+ + λRCWS(V), (14)

where V ∈ RM×N contains the weights for different classes: V = [v1, . . . ,vN ].243

As for LSG, conventional regularization function for CWS is the Frobenious244

norm of V: RCWS(V) = ||V||2F .245

5. Sparse Regularization246

In this section, we define a set of regularization functions for enforcing247

sparsity on the weights so that the resulting combiner will not use all the248

base classifiers leading to a shorter test time. This method can be seen as a249

classifier selection algorithm, but here classifiers are selected automatically250

and we cannot determine the number of selected classifiers beforehand. But251

we can lower this number by increasing the weight of the regularization func-252

tion (λ). With sparse regularization, λ has two main effects on the resulting253

combiner. First, it will determine how much the combiner should fit the254

data. Decreasing λ results in more fitting the training data and decreasing255

it too much results in overfitting, on the other hand, increasing it too much256

prevents the combiner to learn from the data and the accuracy drops dramat-257

ically. Secondly, as mentioned before, it will determine the number of selected258

classifiers. As λ increases, the number of selected classifiers decreases.259
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5.1. Regularization with the l1 Norm260

The most successful approach for inducing sparsity is using the l1 norm261

of the weight vector for WS [34]:262

RWS(u) = ||u||1, (15)

For CWS and LSG, we have the following sparse regularization functions:263

RCWS(V) = ||V||1,1 =
N∑

n=1

||vn||1, (16)

264

RLSG(W) = ||W||1,1 =
N∑

n=1

||wn||1. (17)

If all weights of a classifier are zero, that classifier will be eliminated and265

we do not have to use that base classifier for a test instance, so that testing266

will be faster. But the problem with l1-norm regularizations for CWS and267

LSG is that we are not able to use all the information from a selected base268

classifier, because a classifier may receive both zero and non-zero weights.269

To overcome this problem, we propose to use group sparsity, as explained in270

the next section.271

5.2. Regularization with Group Sparsity272

We define another set of regularization functions which are embedded by273

group sparsity [17] for LSG and CWS to enforce classifier selection. The main274

principle of group sparsity is enforcing all elements that belong to a group275

to be zero altogether. Grouping of the elements are done before learning.276

In classifier combination, posterior scores obtained from each base classifier277
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form a group. The following regularization function yields group sparsity for278

LSG:279

RLSG(W) =
M∑

m=1

||Wm||F . (18)

For CWS, we use the following regularization:280

RCWS(V) = ||V||1,2 =
M∑

m=1

||vm||2, (19)

where vm is the mth row of V, so it contains the weights of the classifier m.281

After the learning process, the elements of vm for any m are either all zero282

or all non-zero. This leads to better performance than l1 regularization for283

automatic classifier selection, as we show in Section 7. In the next section,284

we describe the setup of the experiments.285

6. Experimental Setups286

We have performed extensive experiments in 13 real-world datasets from287

the UCI repository [1] and other sources1. For a summary of the charac-288

teristics of the datasets and the sources, see Table 1. In order to obtain289

statistically significant results, we applied 5x2 cross-validation [6] which is290

based on 5 iterations of 2-fold cross-validation (CV). In this method, for each291

CV, data are randomly split into two stacks as training and testing, resulting292

in overall 10 stacks for each database.293

We constructed three ensembles which differ in the construction method294

and their diversity. In the first ensemble, we construct 10 different subsets295

1Code can be downloaded from http://myweb.sabanciuniv.edu/umutsen/research/

15



randomly which contain 80% of the original data. Then, 13 different classi-296

fiers are trained with each subset resulting in a total of 130 base classifiers.297

We used PR-Tools [23] and Libsvm toolbox [2] for obtaining the base classi-298

fiers. These 13 different classifiers are: normal densities based linear classifier299

(ldc), normal densities based quadratic classifier (qdc), nearest mean classi-300

fier (nmc), k-nearest neighbor classifier (knnc), polynomial classifier (polyc),301

general kernel/dissimilarity based classification (kernelc), normal densities302

based classifier with independent features (udc), Parzen classifier (parzenc),303

binary decision tree classifier (treec), linear perceptron (perlc), SVM with304

linear kernel, polynomial kernel, and radial basis function (RBF) kernel. We305

used default parameters of the toolboxes. Average test error percentages306

over 10 different subsets and 10 stacks of 5x2 CV of 13 different base clas-307

sifier types are given in Table 2. In the second ensemble setup, we trained308

a total of 154 SVM’s with different kernel functions and parameters. Lat-309

ter method produces less diverse base classifiers as compared to the former310

one. Third ensemble setup is the same as the first one, except the pertur-311

bation of the base classifiers are obtained with Random Subspace method312

[10]. In this case, each subset is obtained by choosing half of the features313

randomly, then 13 classifiers are applied for each subset. For some datasets,314

LSG combination could not be performed because of memory limitations.315

Training data of the combiner is obtained by 4-fold internal CV. For each316

stack in 5×2 CV, 2-fold CV is used to obtain the optimal λ in the regulariza-317

tion function, i.e., λ which gives the best average accuracy in CV 2. For the318

2We searched for λ in {10−11, 10−9, 10−7, 10−5, 10−3, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10}
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minimization of the objective functions, we used the CVX-toolbox [9]. We319

use the Wilcoxon signed-rank test for identifying the statistical significance320

of the results with one-tailed significant level α = 0.05 [4].321

Table 1: Properties of the data sets used in the experiments 4

DB # of Instances # of classes # of features

Segment 2310 7 19

Waveform 5000 3 21

Robot 5456 4 24

Statlog 846 4 18

Vowel 990 11 10

Wine 178 3 13

Yeast 1484 9 8

Steel 1941 7 27

Svmguide4 5 612 6 10

Protein 6 5000 3 352

Svmguide2 7 391 3 20

DNA 8 3186 3 180

Cardio 2126 10 22

7. Results322

First, we investigate the performance of the regularized learning of the323

weights with the hinge loss compared to the conventional least squares loss324

4Full names of some datasets: “Image Segmentation” (Segment), “Waveform Database

Generator (Version 1)” (Waveform), “Wall-Following Robot Navigation Data” (Robot),

“Statlog (Vehicle Silhouettes)” (Statlog), “Connectionist Bench (Vowel Recognition - De-

terding Data)” (Vowel), “Steel Plates Faults” (Steel), “Cardiotocography” (Cardio).
5Dataset is provided at [11]
6Dataset is provided at [32]
7Dataset is provided at [11]
8Dataset is provided at [12]
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[21] and the multi-response linear regression (MLR) method which does not325

contain regularization [29] with the diverse ensemble setup described in Sec-326

tion 6. It should be noted that results shown here and in [21, 29] are not327

directly comparable since constructions of the ensembles are different. Error328

percentages of our method (hinge loss with l2 regularization), least squares329

method, and MLR method for WS, CWS and LSG are given in Table 3.330

We also compared the results with simpler combination types, depicted in331

columns EW, EW-Norm, EW-HP, WS-Simple. Results for the simple sum332

rule, which is equivalent to using equal weights in the WS, are given in the333

column titled EW. EW-Norm is the simple sum rule with base classifier334

scores that are normalized to have mean zero and variance one. In EW-HP,335

base classifiers that have lower CV accuracy than the mean of all base clas-336

sifier CV accuracies are not retained in the fusion. WS-Simple is a simple337

weighted-sum rule, where weight of each classifier is set to 4-fold CV accu-338

racy of that base classifier. First entries in the boxes are the means of error339

percentages over 5 × 2 CV stacks and the second entries are the standard340

deviations. Star symbols (*) under the hinge loss column indicate that re-341

sults of the hinge loss function are significantly different from the results of342

the least squares loss function with the corresponding combination type, i.e.,343

WS, CWS, or LSG.344

In most datasets, hinge loss function outperforms the LS loss function for345

the diverse ensemble. On almost all datasets, MLR method results in higher346

error percentages compared to other methods, and this shows the power of347

regularized learning, especially if the number of base classifiers is high. It348

should be noted that in [29], 3 base classifiers are used and here we use 130349
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base classifiers. WS-Simple results in the lowest error percentage for Yeast350

dataset, but this result is not statistically significant. For all other datasets351

except Svmguide-2, performance differences between the best method and352

all four simple combination types (EW, EW-Norm, EW-HP, WS-Simple)353

are statistically significant.354

We also investigated the performance of sparse regularization with the355

hinge loss function. We used two different ensemble setups described in the356

beginning of this section. Regularization parameter λ given in the objec-357

tive functions (10,13,14) is an important parameter and if we minimize the358

objective functions also over λ, the combiner will overfit the training data,359

which will result in poor generalization performance. Therefore, we used360

2-fold cross-validation to learn the optimal parameter. We plot the relation361

of λ with accuracies and the number of selected classifiers for different reg-362

ularizations with WS, CWS and LSG for the Robot dataset in Figures 1a,363

1b and 1c respectively. In these figures, dashed lines correspond to the num-364

ber of selected classifiers and solid lines correspond to the accuracies. The365

l1 − l2 label represents group sparsity. In all sparse regularizations, the best366

accuracies are obtained when most of the base classifiers are eliminated. For367

all regularizations, accuracies make a peak at λ values between 0.001 and368

0.1. For l1 norm regularization, accuracies drop dramatically with a small369

increase in λ. However, with group sparse regularization, accuracies remain370

high in a larger range for λ than that with the l1 norm regularization. Thus371

the performance of l1 regularization is more sensitive to the selection of λ.372

So we can say that the l1 − l2 norm regularization is more robust than the373

l1 norm regularization. As the number of selected classifiers decreases, ac-374

19



0

20

40

60

80

100

120

140

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

N
u

m
b

er
 o

f 
Se

le
ct

ed
 C

la
ss

if
ie

rs
 

A
cc

u
ra

cy
 

l2 accuracy l1 accuracy l1 # of classifiers

(a) WS combination

0

20

40

60

80

100

120

140

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

N
u

m
b

er
 o

f 
Se

le
ct

ed
 C

la
ss

if
ie

rs
 

A
cc

u
ra

cy
 

l2 accuracy l1-l2 accuracy l1 accuracy

l1-l2 # of classifiers l1  # of classifiers

(b) CWS combination

0

20

40

60

80

100

120

140

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

N
u

m
b

er
 o

f 
Se

le
ct

ed
 C

la
ss

if
ie

rs
 

A
cc

u
ra

cy
 

l2 accuracy l1-l2 accuracy l1 accuracy

l1-l2 # of classifiers l1 # of classifiers

(c) LSG combination

Figure 1: Accuracy and Number of selected classifiers vs. λ for WS, CWS

and LSG combination of Robot data with the diverse ensemble setup

curacies increase for a large range of λ in general, but this increase in the375

accuracy cannot be attributed only to the classifier selection, because λ also376

determines how much the combiner should fit the data.377

Next, we show the test results for all combination types with various378

regularization functions. Error percentages and corresponding number of379

selected classifiers (mean ± standard deviation) are shown in Table 4 for380

the diverse ensemble setup. In the significance column, denoted by SIG, the381

letters “a,b,c,d,e” denote that the accuracy-performances between (l2, l1) for382

WS, (l2,l1 − l2), (l1,l1 − l2) for CWS and (l2,l1 − l2), (l1,l1 − l2) for LSG are383
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statistically significant respectively.384

In general, we are able to use much less base classifiers with sparse reg-385

ularizations with the cost of a small decrease in the accuracies. For LSG,386

average error percentage of group sparsity is a little less than that of the387

l1 norm regularization. But the number of selected base classifiers is much388

less. So if classifier selection is desired, we suggest to use either CWS or LSG389

combination with l1− l2 regularization. If training time is also crucial, CWS390

with l1 − l2 regularization seems to be the best option.391

Error percentages and number of selected classifiers for the non-diverse392

ensembles are given in Tables 5. We also compared with the test error per-393

centages of base classifiers which has highest CV accuracy, under the column394

”BC”. With the non-diverse ensembles we are even able to increase the ac-395

curacy with much less number of base classifiers with sparse regularization in396

CWS and LSG. For LSG combination, l1 − l2 regularization results in lower397

error percentages than l1 regularization on four datasets with lower number398

of base classifiers except the Waveform dataset. In general, the number of399

selected base classifiers of l1 − l2 regularization is much less than that of l1400

regularization. Except the Statlog dataset, the lowest error percentages are401

obtained with the sparse combinations with much less base classifiers than402

that of l2 regularization which uses 154 base classifiers. If we compare differ-403

ent combination types with the l2 norm, on average we see that, unlike in the404

diverse ensemble setup, WS and/or CWS outperforms LSG in all databases.405

We can conclude that if the posterior scores obtained from base classifiers are406

correlated, non-complex combiners, such as WS and CWS, are more powerful407

since complex combiners may result in overfitting.408
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Results for the third ensemble (random subspace) is presented at Table 6.409

We see similar results with the diverse ensemble setup, but in general, random410

subspace methods yields higher error rates than the diverse ensemble setup.411

8. Conclusion412

In this paper, we suggested using group sparse regularization for learning413

the parameters of linear combiners in stacked generalization. Results indi-414

cate that group sparse regularization outperforms the conventional l1 norm415

regularization, and we can use smaller number of base classifiers with a small416

sacrifice in the accuracy with the diverse ensemble, so that the test time is417

shortened. With the non-diverse ensemble setup, we even obtain better accu-418

racies using sparse regularizations on some datasets. We also proposed using419

the hinge loss function in the regularized empirical risk minimization frame-420

work, and we are able to obtain better accuracies with the hinge loss function421

than conventional least-squares estimation of the weights. We performed ex-422

periments for three different combination types and compared them. If train-423

ing time is important, we suggest using the CWS type combination. And if424

test time is also important, we suggest using group sparse regularization.425
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[25] Sill, J., Takács, G., Mackey, L., Lin, D., 2009. Feature-weighted linear493

stacking. CoRR abs/0911.0460.494

25



[26] Suykens, J., Vandewalle, J., 1999. Least squares support vec-495

tor machine classifiers. Neural Processing Letters 9, 293–300.496

10.1023/A:1018628609742.497

[27] Tang, B., Chen, Q., Wang, X., Wang, X., 2010. Reranking for stacking498

ensemble learning, in: Proceedings of the 17th international conference499

on Neural information processing: theory and algorithms - Volume Part500

I, Springer-Verlag, Berlin, Heidelberg. pp. 575–584.501

[28] Ting, K.M., Witten, I.H., 1997. Stacking bagged and dagged models, in:502

In Proc. 14th International Conference on Machine Learning, Morgan503

Kaufmann. pp. 367–375.504

[29] Ting, K.M., Witten, I.H., 1999. Issues in stacked generalization. J.505

Artif. Int. Res. 10, 271–289.506

[30] Todorovski, L., Deroski, S., 2000. Combining multiple models with507

meta decision trees, in: Zighed, D., Komorowski, J., Zytkow, J. (Eds.),508

Principles of Data Mining and Knowledge Discovery. Springer Berlin509

/ Heidelberg. volume 1910 of Lecture Notes in Computer Science, pp.510

69–84. 10.1007/3-540-45372-5-6.511

[31] Ueda, N., 2000. Optimal linear combination of neural networks for512

improving classification performance. IEEE Trans. Pattern Anal. Mach.513

Intell. 22, 207–215.514

[32] Wang, J.Y., 2002. Application of Support Vector Machines in Bioinfor-515

matics. Master’s thesis.516

26



[33] Wolpert, D.H., 1992. Stacked generalization. Neural Netw. 5, 241–259.517

[34] Zhang, L., Zhou, W.D., 2011. Sparse ensembles using weighted combi-518

nation methods based on linear programming. Pattern Recognition 44,519

97 – 106.520

27



T
ab

le
2:

E
rr

or
p

er
ce

n
ta

ge
s

fo
r

b
as

e
cl

as
si

fi
er

s
in

th
e

d
iv

er
se

en
se

m
b
le

se
tu

p
(m

ea
n
±

st
an

da
rd

de
vi
a-

ti
on

)×
10

0.

D
B

ld
c

q
d
c

n
m

c
k
n
n
c

p
ol

y
c

ke
rn

el
c

u
d
c

p
ar

ze
n
c

tr
ee

c
p

er
lc

sv
m

-l
in

ea
r

sv
m

-p
ol

y
sv

m
-r

b
f

S
eg

m
en

t
8.

80
±

0.
58

13
.0

1
±

1.
79

27
.6

1
±

1.
95

5
.5
7
±

0
.6
9

13
.3

0
±

1.
50

8.
77
±

1.
08

21
.3

2
±

1.
88

9.
60
±

2.
14

12
.7

3
±

2.
24

57
.9

8
±

5.
54

29
.2

3
±

4.
86

57
.9

3
±

10
.9

8
50

.2
6
±

10
.3

8

W
av

ef
or

m
14

.5
9
±

0.
77

15
.8

0
±

0.
56

19
.9

8
±

0.
51

14
.7

0
±

0.
56

14
.6

5
±

0.
79

1
3
.5
8
±

0
.6
9

19
.0

9
±

0.
47

16
.3

7
±

0.
59

29
.2

2
±

0.
95

19
.2

8
±

2.
99

13
.3

7
±

0.
75

20
.1

1
±

2.
32

13
.0

9
±

0.
62

R
ob

ot
34

.6
2
±

0.
99

31
.3

3
±

0.
93

44
.7

2
±

0.
89

15
.4

1
±

0.
70

35
.6

1
±

0.
98

20
.4

9
±

1.
13

47
.2

5
±

1.
38

16
.3

7
±

0.
68

5
.8
7
±

0
.7
9

42
.7

2
±

4.
02

29
.4

8
±

0.
99

31
.7

3
±

0.
65

27
.4

8
±

1.
00

S
ta

tl
og

22
.4

7
±

1.
68

1
7
.5
1
±

1
.3
4

61
.2

4
±

1.
29

39
.3

1
±

2.
15

23
.0

5
±

1.
91

30
.3

7
±

1.
74

54
.4

2
±

3.
08

39
.0

8
±

2.
06

33
.2

9
±

2.
49

29
.8

2
±

3.
90

64
.5

8
±

4.
08

67
.7

8
±

6.
91

63
.9

5
±

5.
41

V
ow

el
41

.4
4
±

2.
81

20
.3

4
±

2.
35

43
.5

3
±

2.
99

8
.0
6
±

1
.5
1

55
.3

6
±

3.
30

22
.5

2
±

2.
44

36
.3

3
±

4.
20

8.
14
±

1.
47

42
.9

6
±

4.
09

65
.8

0
±

4.
00

59
.1

2
±

6.
08

65
.1

3
±

6.
69

65
.0

3
±

6.
83

W
in

e
2.

91
±

2.
28

8.
28
±

5.
68

27
.9

3
±

3.
32

32
.1

5
±

4.
02

2
.7
8
±

1
.9
8

27
.9

0
±

3.
47

2.
91
±

2.
20

31
.6

5
±

3.
41

16
.5

2
±

5.
10

3.
08
±

2.
31

36
.9

3
±

6.
79

50
.0

8
±

15
.7

4
46

.4
3
±

17
.2

8

Y
ea

st
4
1
.7
3
±

1
.3
5

79
.8

0
±

10
.3

7
49

.8
2
±

1.
27

43
.7

6
±

1.
32

47
.4

8
±

1.
24

42
.1

4
±

1.
24

80
.9

4
±

11
.2

3
44

.1
6
±

1.
64

56
.4

4
±

2.
93

59
.0

8
±

9.
28

43
.0

1
±

1.
62

45
.9

1
±

3.
17

43
.3

8
±

1.
83

S
te

el
3
2
.5
9
±

0
.9
0

40
.2

8
±

2.
12

83
.8

7
±

2.
32

52
.1

0
±

1.
43

34
.9

9
±

1.
52

50
.9

2
±

1.
28

42
.2

9
±

2.
11

52
.1

6
±

3.
36

41
.3

0
±

2.
33

44
.5

1
±

4.
70

51
.6

3
±

2.
22

65
.9

1
±

2.
73

51
.3

4
±

1.
23

S
v
m

gu
id

e4
28

.3
9
±

5.
23

2
2
.2
8
±

3
.2
6

79
.3

1
±

2.
33

67
.8

7
±

2.
80

35
.4

1
±

4.
68

61
.7

1
±

2.
77

53
.4

1
±

7.
03

80
.4

1
±

1.
58

31
.2

9
±

4.
58

45
.4

8
±

9.
45

76
.1

9
±

7.
11

81
.7

9
±

2.
15

77
.5

5
±

6.
18

P
ro

te
in

39
.8

1
±

0.
88

51
.7

4
±

0.
96

38
.7

9
±

0.
96

49
.1

8
±

1.
30

39
.6

2
±

0.
88

42
.8

6
±

1.
05

52
.4

0
±

3.
19

56
.5

9
±

1.
18

58
.8

6
±

1.
05

43
.0

1
±

1.
23

39
.8

5
±

0.
80

53
.1

4
±

8.
91

3
7
.8
0
±

1
.1
6

S
v
m

gu
id

e2
19

.8
5
±

1.
99

43
.6

1
±

13
.4

0
25

.1
7
±

2.
68

24
.9

7
±

2.
59

20
.5

9
±

2.
46

1
7
.5
9
±

1
.9
3

22
.0

8
±

2.
10

23
.2

7
±

2.
30

37
.9

9
±

3.
29

25
.9

7
±

3.
70

20
.2

8
±

2.
07

23
.1

0
±

3.
16

21
.3

1
±

2.
19

D
N

A
6.

72
±

0.
59

34
.5

2
±

1.
15

11
.0

6
±

0.
57

12
.8

2
±

1.
66

6.
35
±

0.
54

9.
64
±

0.
81

5
.4
4
±

0
.4
7

27
.9

9
±

1.
27

19
.5

2
±

1.
61

9.
66
±

0.
95

8.
86
±

0.
46

12
.9

8
±

1.
69

5.
98
±

0.
69

C
ar

d
io

2
6
.8
6
±

1
.0
7

28
.6

5
±

1.
93

62
.7

4
±

1.
66

32
.0

2
±

1.
44

35
.0

1
±

1.
91

32
.5

3
±

1.
58

41
.5

9
±

2.
99

36
.4

6
±

2.
32

40
.5

8
±

3.
82

39
.8

8
±

5.
15

44
.9

3
±

1.
94

55
.5

7
±

3.
42

45
.5

0
±

1.
78

T
ab

le
3:

E
rr

or
p

er
ce

n
ta

ge
s

in
th

e
d
iv

er
se

en
se

m
b
le

se
tu

p
(m

ea
n
±

st
an

da
rd

de
vi
at
io
n

)×
10

0.

D
B

H
in

ge
L

os
s

w
it

h
l 2

re
gu

la
ri

za
ti

on
L

S
L

os
s

w
it

h
l 2

re
gu

la
ri

za
ti

on
M

L
R

E
W

E
W

-N
or

m
E

W
-H

P
W

S
-S

im
p
le

W
S

C
W

S
L

S
G

W
S

C
W

S
L

S
G

W
S

C
W

S
L

S
G

S
eg

m
en

t
5.

02
±

0.
88

*
3.

90
±

1.
00

3.
60
±

1.
05

6.
34
±

0.
78

3
.5
4
±

0
.8
2

3.
57
±

0.
96

7.
20
±

1.
02

6.
66
±

6.
64

61
.2

8
±

9.
35

7.
37
±

1.
03

7.
57
±

1.
36

5.
69
±

0.
72

6.
81
±

1.
06

W
av

ef
or

m
13

.2
0
±

0.
69

1
3
.0
5
±

0
.7
2

*
1
3
.0
5
±

0
.6
5

*
13

.1
9
±

0.
73

13
.1

7
±

0.
72

13
.1

8
±

0.
69

13
.3

3
±

0.
68

14
.1

0
±

0.
56

18
.4

0
±

7.
06

14
.1

7
±

0.
60

13
.4

7
±

0.
65

13
.2

6
±

0.
61

14
.0

6
±

0.
62

R
ob

ot
3.

95
±

0.
42

*
2.

59
±

0.
33

2.
61
±

0.
28

*
5.

29
±

0.
61

2.
55
±

0.
30

2
.5
3
±

0
.3
1

5.
05
±

0.
62

2.
58
±

0.
30

3.
19
±

0.
49

18
.5

8
±

0.
61

23
.7

5
±

0.
93

10
.7

2
±

1.
11

16
.4

3
±

0.
52

S
ta

tl
og

16
.3

4
±

1.
15

*
1
6
.1
2
±

1
.5
3

*
16

.3
6
±

1.
67

16
.7

8
±

1.
62

16
.7

4
±

1.
91

16
.8

8
±

1.
71

17
.7

3
±

2.
11

58
.0

1
±

15
.3

8
75

.7
2
±

6.
18

23
.0

3
±

2.
33

25
.7

7
±

1.
32

19
.0

3
±

1.
80

19
.8

6
±

2.
12

V
ow

el
13

.8
4
±

2.
73

7.
66
±

2.
29

*
6
.3
2
±

1
.9
9

13
.9

0
±

2.
63

6.
42
±

2.
06

6.
46
±

2.
22

17
.1

5
±

2.
31

10
.0

8
±

1.
75

9.
76
±

1.
14

14
.5

3
±

3.
30

16
.3

4
±

2.
74

10
.1

6
±

2.
11

11
.8

4
±

2.
23

W
in

e
1.

57
±

1.
09

1
.1
2
±

1
.4
0

*
1.

69
±

1.
32

2.
36
±

1.
54

2.
13
±

2.
21

2.
13
±

1.
79

3.
71
±

2.
31

8.
20
±

16
.1

9
2.

47
±

1.
66

2.
81
±

1.
52

4.
49
±

1.
67

1.
24
±

1.
35

2.
13
±

1.
35

Y
ea

st
40

.3
6
±

1.
21

40
.2

3
±

1.
29

40
.3

2
±

1.
19

40
.2

6
±

1.
06

40
.6

2
±

1.
44

40
.9

4
±

1.
70

41
.0

5
±

1.
04

53
.1

1
±

6.
88

74
.4

5
±

6.
42

40
.2

6
±

1.
10

46
.9

9
±

9.
24

40
.4

4
±

0.
86

4
0
.2
2
±

0
.9
7

S
te

el
29

.8
5
±

1.
86

*
28

.2
7
±

1.
38

*
2
7
.4
1
±

1
.2
2

30
.7

3
±

2.
02

27
.5

2
±

1.
17

27
.6

4
±

1.
47

30
.3

5
±

1.
34

51
.4

0
±

14
.6

6
77

.1
2
±

7.
82

31
.5

7
±

2.
07

34
.7

6
±

1.
11

31
.8

4
±

1.
79

30
.6

1
±

1.
60

S
v
m

gu
id

e4
18

.1
4
±

2.
40

17
.3

9
±

2.
16

17
.2

5
±

2.
14

18
.9

9
±

2.
77

17
.5

2
±

1.
97

1
7
.1
2
±

2
.4
7

18
.5

0
±

3.
10

72
.8

1
±

4.
46

32
.4

8
±

3.
87

24
.7

4
±

3.
47

25
.8

8
±

4.
05

21
.5

7
±

3.
96

21
.2

7
±

3.
29

P
ro

te
in

36
.9

6
±

0.
89

36
.4

0
±

0.
82

36
.2

4
±

0.
83

36
.9

3
±

0.
67

36
.1

4
±

0.
91

3
6
.1
1
±

0
.9
3

37
.3

5
±

0.
69

39
.1

0
±

1.
80

49
.7

4
±

10
.2

6
37

.0
9
±

0.
73

39
.5

8
±

0.
98

36
.5

2
±

0.
80

36
.8

1
±

0.
79

S
v
m

gu
id

e2
17

.2
4
±

2.
41

17
.9

6
±

4.
82

1
7
.2
4
±

2
.2
3

17
.7

0
±

1.
95

17
.3

4
±

2.
24

17
.6

0
±

2.
42

22
.2

0
±

3.
98

45
.2

3
±

17
.8

1
45

.1
2
±

11
.3

9
17

.3
9
±

1.
75

30
.3

3
±

15
.7

2
17

.5
0
±

2.
13

17
.4

4
±

1.
79

D
N

A
4.

93
±

0.
37

4.
61
±

0.
49

4.
48
±

0.
57

*
4.

97
±

0.
46

4.
49
±

0.
62

4.
66
±

0.
65

5.
19
±

0.
50

4
.4
3
±

0
.5
4

4.
51
±

0.
61

5.
12
±

0.
44

6.
84
±

0.
67

5.
58
±

0.
49

5.
17
±

0.
47

C
ar

d
io

17
.9

0
±

1.
09

17
.9

5
±

0.
98

*
-

17
.6

6
±

0.
98

19
.7

8
±

1.
01

-
1
7
.2
2
±

0
.6
2

25
.6

3
±

7.
57

-
18

.5
8
±

0.
61

29
.3

1
±

1.
66

23
.7

5
±

0.
85

25
.1

5
±

1.
00

28



T
ab

le
4:

E
rr

or
p

er
ce

n
ta

ge
s

an
d

n
u
m

b
er

of
se

le
ct

ed
cl

as
si

fi
er

s
(o

u
t

of
13

0)
fo

r
sp

ar
se

re
gu

la
ri

za
ti

on
s

w
it

h

th
e

d
iv

er
se

en
se

m
b
le

se
tu

p
(m

ea
n
±

st
an

da
rd

de
vi
at
io
n

)×
10

0.
B

ol
d

va
lu

es
ar

e
th

e
lo

w
es

t
er

ro
r

p
er

ce
n
ta

ge
s

an
d

n
u
m

b
er

of
se

le
ct

ed
cl

as
si

fi
er

s
of

sp
ar

se
re

gu
la

ri
za

ti
on

s
(l

1
or
l 1
−
l 2

re
gu

la
ri

za
ti

on
s)

E
rr

or
p

er
ce

n
ta

ge
s

N
u
m

b
er

of
S
el

ec
te

d
C

la
ss

ifi
er

s

D
B

W
S

C
W

S
L

S
G

W
S

C
W

S
L

S
G

S
IG

l 2
l 1

l 2
l 1

l 1
−
l 2

l 2
l 1

l 1
−
l 2

l 1
l 1

l 1
−
l 2

l 1
l 1
−
l 2

S
eg

m
en

t
5.

02
±

0.
88

4.
90
±

0.
99

3.
90
±

1.
00

3.
62
±

0.
62

3.
74
±

0.
40

3.
60
±

1.
05

3.
79
±

1.
05

3
.2
9
±

0
.5
5

2
1
.5
0
±

4
.6
2

63
.5

0
±

25
.7

2
30

.8
0
±

34
.9

2
97

.4
0
±

24
.4

0
80

.4
0
±

14
.9

3

W
av

ef
or

m
13

.2
0
±

0.
69

13
.3

8
±

0.
70

13
.0

5
±

0.
72

13
.4

6
±

0.
74

13
.4

2
±

0.
76

13
.0

5
±

0.
65

13
.3

3
±

0.
71

1
3
.2
4
±

0
.6
4

36
.6

0
±

49
.4

4
23

.3
0
±

37
.5

9
47

.0
0
±

57
.3

1
1
1
.2
0
±

2
.3
0

12
.1

0
±

5.
38

b
d

R
ob

ot
3.

95
±

0.
42

4.
00
±

0.
38

2.
59
±

0.
33

2.
57
±

0.
35

2
.4
9
±

0
.3
3

2.
61
±

0.
28

2.
54
±

0.
35

2.
52
±

0.
32

41
.8

0
±

9.
02

18
.6

0
±

5.
97

14
.0

0
±

4.
55

18
.5

0
±

4.
53

1
3
.3
0
±

2
.6
3

c

S
ta

tl
og

16
.3

4
±

1.
15

1
7
.1
9
±

1
.6
3

16
.1

2
±

1.
53

17
.4

5
±

1.
74

17
.3

3
±

1.
42

16
.3

6
±

1.
67

17
.4

0
±

1.
34

17
.4

5
±

1.
51

36
.1

0
±

34
.7

5
14

.3
0
±

10
.8

5
49

.2
0
±

56
.1

3
30

.6
0
±

36
.3

1
1
1
.2
0
±

1
2
.4
2

ab
d

V
ow

el
13

.8
4
±

2.
73

14
.4

0
±

2.
27

7.
66
±

2.
29

7.
62
±

2.
02

7.
17
±

1.
50

6.
32
±

1.
99

6
.1
8
±

1
.1
9

6.
79
±

1.
17

10
8.

90
±

44
.4

8
37

.8
0
±

32
.6

2
57

.3
0
±

62
.6

4
12

8.
00
±

6.
32

1
3
.8
0
±

3
.9
9

a

W
in

e
1.

57
±

1.
09

2.
13
±

1.
63

1.
12
±

1.
40

2.
25
±

1.
18

1
.9
1
±

1
.3
0

1.
69
±

1.
32

2.
25
±

1.
59

2.
36
±

1.
54

13
0.

00
±

0.
00

12
1.

30
±

18
.6

0
11

7.
10
±

40
.4

4
93

.5
0
±

58
.8

6
9
1
.6
0
±

6
1
.8
3

d

Y
ea

st
40

.3
6
±

1.
21

4
0
.3
8
±

1
.0
6

40
.2

3
±

1.
29

42
.4

0
±

4.
10

41
.1

9
±

1.
57

40
.3

2
±

1.
19

48
.0

9
±

18
.3

0
41

.6
7
±

1.
31

11
9.

10
±

34
.4

7
12

1.
00
±

28
.4

6
40

.4
0
±

47
.3

3
13

0.
00
±

0.
00

9
.8
0
±

3
.4
6

b
d

S
te

el
29

.8
5
±

1.
86

30
.0

0
±

2.
61

28
.2

7
±

1.
38

28
.3

1
±

1.
39

2
7
.4
1
±

1
.2
1

27
.4

1
±

1.
22

28
.0

9
±

1.
03

27
.5

0
±

1.
24

41
.9

0
±

32
.0

5
42

.1
0
±

6.
85

35
.3

0
±

8.
10

51
.0

0
±

16
.6

2
3
5
.2
0
±

1
1
.9
3

b
c

S
v
m

gu
id

e4
18

.1
4
±

2.
40

18
.5

3
±

3.
39

17
.3

9
±

2.
16

18
.7

9
±

3.
45

1
8
.0
7
±

2
.3
1

17
.2

5
±

2.
14

23
.6

6
±

19
.4

4
18

.1
4
±

2.
50

46
.0

0
±

31
.9

4
40

.4
0
±

32
.6

1
45

.6
0
±

46
.1

4
51

.9
0
±

40
.2

1
1
9
.9
0
±

1
7
.3
7

d

P
ro

te
in

36
.9

6
±

0.
89

36
.8

9
±

0.
76

36
.4

0
±

0.
82

36
.6

6
±

0.
95

3
6
.3
2
±

1
.0
3

36
.2

4
±

0.
83

38
.4

8
±

5.
03

36
.5

9
±

1.
07

95
.2

0
±

45
.2

1
23

.5
0
±

7.
71

47
.9

0
±

57
.7

0
33

.6
0
±

35
.5

5
1
7
.3
0
±

1
4
.7
0

S
v
m

gu
id

e2
17

.2
4
±

2.
41

17
.8

0
±

2.
35

17
.9

6
±

4.
82

19
.1

3
±

2.
60

17
.9

6
±

4.
43

17
.2

4
±

2.
23

19
.4

9
±

2.
63

1
7
.3
9
±

2
.0
0

70
.0

0
±

63
.2

8
72

.1
0
±

61
.4

5
10

.3
0
±

10
.3

0
69

.9
0
±

63
.9

7
6
.1
0
±

3
.1
8

e

D
N

A
4.

93
±

0.
37

5.
08
±

0.
52

4.
61
±

0.
49

4.
82
±

0.
47

4
.7
9
±

0
.6
1

4.
48
±

0.
57

5.
06
±

0.
67

5.
13
±

0.
68

97
.2

0
±

37
.5

1
97

.0
0
±

33
.6

6
10

7.
60
±

29
.1

7
80

.2
0
±

26
.8

3
6
5
.4
0
±

1
2
.4
7

ad

C
ar

d
io

17
.9

0
±

1.
09

1
8
.0
5
±

1
.1
7

17
.9

5
±

0.
98

19
.8

9
±

0.
93

18
.9

8
±

0.
56

-
-

-
61

.5
0
±

12
.5

4
51

.5
0
±

10
.2

4
35

.7
0
±

8.
30

18
.5

0
±

4.
53

1
3
.3
0
±

2
.6
3

b
c

T
ab

le
5:

E
rr

or
p

er
ce

n
ta

ge
s

an
d

n
u
m

b
er

of
se

le
ct

ed
cl

as
si

fi
er

s
(o

u
t

of
15

4)
fo

r
sp

ar
se

re
gu

la
ri

za
ti

on
s

w
it

h
th

e

n
on

-d
iv

er
se

en
se

m
b
le

se
tu

p
(m

ea
n
±

st
an

da
rd

de
vi
at
io
n

)×
10

0.
B

ol
d

va
lu

es
ar

e
th

e
lo

w
es

t
er

ro
r

p
er

ce
n
ta

ge
s

an
d

n
u
m

b
er

of
se

le
ct

ed
cl

as
si

fi
er

s
of

sp
ar

se
re

gu
la

ri
za

ti
on

s
(l

1
or
l 1
−
l 2

re
gu

la
ri

za
ti

on
s)

E
rr

or
p

er
ce

n
ta

ge
s

N
u
m

b
er

of
S
el

ec
te

d
C

la
ss

ifi
er

s

D
B

W
S

C
W

S
L

S
G

B
C

W
S

C
W

S
L

S
G

S
IG

l 2
l 1

l 2
l 1

l 1
−
l 2

l 2
l 1

l 1
−
l 2

l 1
l 1

l 1
−
l 2

l 1
l 1
−
l 2

S
eg

m
en

t
4.

48
±

0.
64

4.
49
±

0.
71

4.
28
±

0.
71

4
.2
1
±

0
.8
0

4.
33
±

0.
74

4.
42
±

0.
63

9.
78
±

17
.1

1
4.

35
±

0.
75

4.
28
±

0.
75

29
.4

0
±

8.
13

13
.6

0
±

6.
93

8.
40
±

6.
93

51
.8

0
±

70
.8

0
2
.6
0
±

2
.6
7

W
av

ef
or

m
13

.1
9
±

0.
71

1
3
.1
2
±

0
.8
1

13
.2

2
±

0.
78

13
.3

3
±

0.
75

13
.2

4
±

0.
78

13
.2

0
±

0.
73

13
.2

0
±

0.
70

13
.2

5
±

0.
68

13
.3

0
±

0.
80

32
.4

0
±

64
.1

0
51

.6
0
±

70
.9

8
95

.6
0
±

75
.5

4
5
.1
0
±

3
.1
8

36
.7

0
±

62
.3

7

R
ob

ot
8.

02
±

0.
62

7.
98
±

0.
70

7.
98
±

0.
62

8.
13
±

0.
40

7
.9
4
±

0
.4
9

7.
99
±

0.
69

8.
13
±

0.
55

7.
99
±

0.
56

8.
54
±

0.
56

43
.8

0
±

16
.1

9
30

.6
0
±

10
.2

0
28

.3
0
±

16
.5

7
20

.5
0
±

15
.7

1
1
3
.7
0
±

3
.4
0

ce

S
ta

tl
og

18
.7

0
±

2.
19

18
.8

7
±

2.
05

18
.5

6
±

2.
05

1
8
.7
7
±

1
.7
4

19
.2

4
±

1.
81

19
.4

1
±

1.
31

19
.1

7
±

2.
17

19
.1

0
±

1.
56

19
.6

2
±

1.
79

18
.9

0
±

9.
46

14
.5

0
±

11
.9

8
8.

90
±

9.
64

25
.3

0
±

46
.0

7
7
.8
0
±

5
.0
3

c

V
ow

el
7.

70
±

2.
05

9.
88
±

3.
46

7.
45
±

2.
23

6.
34
±

2.
29

6
.0
8
±

2
.3
7

8.
71
±

2.
34

7.
72
±

2.
24

6.
10
±

2.
30

6.
06
±

2.
26

69
.2

0
±

59
.2

7
8.

70
±

10
.1

2
3.

00
±

2.
83

12
5.

70
±

45
.8

2
1
.4
0
±

0
.7
0

b
d
e

W
in

e
9.

10
±

2.
72

8.
88
±

2.
45

10
.5

6
±

3.
86

8.
65
±

3.
05

8
.2
0
±

3
.6
3

11
.5

7
±

3.
75

8.
65
±

2.
31

8.
99
±

2.
95

8.
54
±

3.
79

65
.0

0
±

73
.2

4
39

.3
0
±

60
.9

6
2
1
.9
0
±

4
6
.0
9

34
.8

0
±

62
.8

4
78

.9
0
±

79
.1

9
b

d

29



T
ab

le
6:

E
rr

or
p

er
ce

n
ta

ge
s

an
d

n
u
m

b
er

of
se

le
ct

ed
cl

as
si

fi
er

s
(o

u
t

of
15

4)
fo

r
sp

ar
se

re
gu

la
ri

za
ti

on
s

w
it

h

th
e

R
an

d
om

S
u
b
sp

ac
e

en
se

m
b
le

se
tu

p
(m

ea
n
±

st
an

da
rd

de
vi
at
io
n

)×
10

0.
B

ol
d

va
lu

es
ar

e
th

e
lo

w
es

t
er

ro
r

p
er

ce
n
ta

ge
s

an
d

n
u
m

b
er

of
se

le
ct

ed
cl

as
si

fi
er

s
of

sp
ar

se
re

gu
la

ri
za

ti
on

s
(l

1
or
l 1
−
l 2

re
gu

la
ri

za
ti

on
s)

E
rr

or
p

er
ce

n
ta

ge
s

N
u
m

b
er

of
S
el

ec
te

d
C

la
ss

ifi
er

s

D
B

W
S

C
W

S
L

S
G

W
S

C
W

S
L

S
G

S
IG

l 2
l 1

l 2
l 1

l 1
−
l 2

l 2
l 1

l 1
−
l 2

l 1
l 1

l 1
−
l 2

l 1
l 1
−
l 2

W
av

ef
or

m
13

.9
3
±

0.
72

14
.0

2
±

0.
89

13
.8

9
±

0.
77

14
.0

1
±

0.
86

1
3
.8
2
±

0
.7
4

-
-

-
25

.5
0
±

18
.7

2
27

.7
0
±

2.
91

2
0
.6
0
±

3
.7
2

-
-

R
ob

ot
2.

49
±

0.
71

2.
61
±

0.
77

2.
14
±

0.
63

2.
13
±

0.
70

2
.0
9
±

0
.6
9

-
-

-
51

.9
0
±

13
.8

4
18

.6
0
±

8.
58

1
5
.8
0
±

9
.7
5

-
-

S
ta

tl
og

20
.8

0
±

3.
08

21
.7

7
±

2.
98

19
.3

1
±

2.
52

1
9
.3
6
±

2
.6
6

19
.7

2
±

3.
23

19
.2

7
±

3.
00

19
.4

8
±

2.
87

19
.5

0
±

2.
97

48
.8

0
±

46
.3

9
24

.8
0
±

14
.0

6
1
7
.0
0
±

9
.6
3

35
.5

0
±

31
.6

6
20

.3
0
±

19
.8

2

V
ow

el
12

.7
7
±

3.
01

13
.5

8
±

3.
06

6.
08
±

2.
19

7.
72
±

1.
94

6
.2
2
±

1
.4
7

6.
16
±

1.
85

6.
75
±

2.
00

6.
30
±

1.
35

11
4.

00
±

34
.3

7
22

.7
0
±

3.
43

12
.7

0
±

7.
29

92
.9

0
±

44
.1

6
1
0
.8
0
±

5
.0
3

c

W
in

e
2.

58
±

1.
30

3.
37
±

1.
67

2.
13
±

1.
24

7.
42
±

5.
03

2
.1
3
±

1
.3
5

2.
25
±

1.
67

3.
03
±

1.
50

2.
92
±

2.
44

70
.9

0
±

62
.3

5
82

.1
0
±

61
.8

9
84

.2
0
±

59
.6

5
1
4
.4
0
±

5
.3
4

17
.3

0
±

15
.7

6
c

S
te

el
28

.2
2
±

1.
69

28
.1

6
±

1.
47

26
.6

6
±

1.
20

27
.2

3
±

1.
41

2
7
.0
3
±

1
.8
3

27
.1

7
±

1.
47

27
.3

8
±

1.
17

27
.9

9
±

1.
35

48
.1

0
±

17
.1

4
38

.6
0
±

6.
82

30
.8

0
±

13
.7

8
50

.7
0
±

29
.4

5
2
2
.0
0
±

1
8
.5
7

S
v
m

gu
id

e4
20

.8
5
±

3.
53

21
.0

1
±

4.
01

18
.7

6
±

3.
02

19
.1

5
±

3.
97

1
8
.4
6
±

3
.8
7

18
.9

5
±

3.
00

20
.0

3
±

3.
32

22
.2

5
±

3.
95

47
.0

0
±

8.
52

32
.1

0
±

7.
13

27
.4

0
±

8.
91

51
.8

0
±

29
.2

3
9
.4
0
±

4
.5
0

d

p
ro

te
in

37
.6

4
±

0.
83

37
.8

1
±

0.
90

37
.0

2
±

0.
77

37
.0

1
±

0.
80

3
6
.8
5
±

0
.7
2

-
-

-
73

.3
0
±

39
.8

0
37

.8
0
±

11
.1

1
3
2
.7
0
±

7
.3
6

-
-

sv
m

gu
id

e2
17

.9
5
±

3.
12

1
7
.9
0
±

2
.4
6

17
.6

5
±

2.
28

18
.9

8
±

2.
30

19
.7

4
±

2.
38

17
.0

8
±

2.
15

20
.0

5
±

2.
96

19
.3

3
±

3.
05

81
.9

0
±

62
.1

1
18

.2
0
±

12
.9

4
13

.4
0
±

11
.8

5
12

.2
0
±

11
.2

8
1
0
.1
0
±

3
.8
4

b
d

D
N

A
5.

27
±

0.
66

5.
38
±

0.
63

4.
77
±

0.
66

4
.8
5
±

0
.4
2

4.
88
±

0.
54

-
-

-
2
6
.9
0
±

9
.7
2

34
.8

0
±

5.
41

29
.3

0
±

2.
95

-
-

30


