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Abstract—This paper proposes two methods to incorporate se-
mantic information into word and concept level confidence mea-
surement. The first method uses tag and extension probabilities ob-
tained from a statistical classer and parser. The second method uses
a maximum entropy based semantic structured language model to
assign probabilities to each word. Incorporation of semantic fea-
tures into a lattice posterior probability based confidence measure
provides significant improvements compared to posterior proba-
bility when used together in an air travel reservation task. At 5%
False Alarm (FA) rate relative improvements of 28% and 61% in
Correct Acceptance (CA) rate are achieved for word level and con-
cept level confidence measurements, respectively.

I. INTRODUCTION

AUTOMATIC speech recognition systems are far from
perfect. There are a number of factors including environ-

ment, telephone line quality, and speaker variability that can
impair speech recognitionperformance. Moreover, in somecases
a speech understanding component can generate an incorrect
parse result sending the dialog on a completely wrong path.
In order to circumvent these problems it is vital to employ a
reliable confidence metric that can identify speech recognition
errors. This information can be used to generate repair dialogs.
Attachingaconfidencevalue toeachwordcanalsobeusedfor im-
proved unsupervised adaptation, automatic weighting of speech
and nonspeech information sources, and information retrieval
algorithms. Furthermore, speech recognition confidence can be
used in conjunction with the natural language understanding
component of the system to affect the parsing strategy [16].

In [21] a number of issues regarding the incorporation of a
confidence metric into a speech recognition system are listed.
These issues include 1) at what stage the confidence metric
should be applied, 2) the definition of what constitutes an error,
3) what are the most useful features to incorporate, 4) what
model should be used to combine various features, and 5) how to
measure the performance of a confidence metric. A significant
portion of the research for confidence annotation methods for
limited domains centers around items 3 and 4. The majority of
the approaches share two basic steps: 1) generate as many fea-
tures as possible based on the speech recognition and/or natural
language understanding process and 2) use a classifier to com-
bine these features in a reasonable way. Typically, confidence
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measures depend on the type of the task and the particular appli-
cation. For domain independent large vocabulary speech recog-
nition systems, posterior probability based on a word graph is
shown to be the single most useful confidence feature [4], [15].
For limited domains, features from a speech understanding unit
are also helpful.

There are a number of cues that suggest when a speech
recognition hypothesis may be in error. These cues can be
observed from acoustic model scores, language model scores,
word counts in an N-best list, lattice density, phone perplexity,
language model back-off behavior, and posterior probabilities
[2], [12], [8], [14]. However, many of these features overlap
considerably and they have already been included in the recog-
nition process directly or indirectly. As a result, the combination
of a number of features from the same source may only result
in a marginal improvement over the best single feature.

In many, if not all, of the previous studies the way in which the
semantic information is incorporated into the decision process
is rather ad hoc. For example in [14], the semantic weights
assigned to words were based on heuristics. Similarly, in [3]
such semantic features as “uncovered word percentage,” “gap
number,” “slot number,” etc. were generated experimentally in
an effort to incorporate semantic information into the confidence
metric. Using the information derived from the concept sequence
generated by the parser combined with the lattice posterior
probability improved the confidence measurement performance.
The improvement was modest on some tasks [8], [3] while more
pronounced for the others [12]. Similar to using many overlap-
ping speech recognition based features, here many overlapping
semantic features are designed. Recently, there have been new
approaches attempting to integrate lexical and semantic content
of the sentence tightly. In [5], a word graph is converted into
a concept graph and confidence measure is computed on the
concept graph providing significant improvement over posterior
probability based feature. Decoupling of language and acoustic
modeling in speech recognition along with introduction of latent
semantic analysis (LSA) to find (dis)similar words in a sentence
for confidence measurement is also shown to provide improve-
ment over traditional speech recognition based features [18].
However, we believe that significant research effort has to focus
on developing a framework which allows for tight integration
of the lexical and semantic content of a sentence.

Confidence measurement can be applied either at the word
level, phrase/concept level, utterance level or their combina-
tions. In this paper, both word, and concept level confidence
annotations are considered. We propose two methods that use
two sets of statistical features to model semantic information in
a sentence. The first relies solely on the semantic classer/parse
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tree where node and extension scores corresponding to tags and
labels are used. The underlying motivation is that sentences that
are grammatically correct and free of recognition errors tend
to be easier to parse and the corresponding scores in the parse
tree are higher than those of the ungrammatical sentences con-
taining errors generated by the speech recognizer. Even though
spontaneous speech has ungrammatical constructions, we as-
sume that the ungrammatical word sequences generated by the
speech recognition engine is different from those produced in
spontaneous speech. Since, the statistical parser used in this
study is data driven, the parser model learns the ungrammatical
sentences from the actual spontaneous utterances, as opposed
to those from the speech recognition engine. The second tech-
nique is based on joint maximum entropy modeling of the word
sequence and the semantic parse tree. Depending upon using
shallow parsing or full parsing two maximum entropy struc-
tured language modeling techniques are used to combine se-
mantic and lexical information sources. In this study, we use
lattice based posterior probabilities as the one set of features
obtained from the speech recognition component and combine
with the proposed semantic features in a probabilistic frame-
work for each word or concept. Furthermore, we also use dialog
state information as an explicit additional feature to investigate
its effect on the overall results.

The rest of the paper is organized as follows. In Section II,
we briefly present the semantic analysis employed in our work.
We describe the maximum entropy based semantic structured
language models in Section III. Section IV defines the semantic
confidence features followed by the feature combination from
multiple sources. Experimental results are presented in Section
VI. Finally, Section VII summarizes the findings.

II. SEMANTIC ANALYSIS

Semantic analysis involves finding the semantic units that
span words or word groups and modeling the relationships
among these units in a sentence. Semantic units are assigned
certain tags and labels. Each word is assigned a tag associated
with its semantic content. Semantically related word(s) are
grouped under a semantic label. Moreover, higher level rela-
tionships among semantic unit groups are also modeled. The
semantic analysis employed in this study is based on statistical
classing and parsing and is currently used in limited domain di-
alog systems. Like many other statistical system, our statistical
parser and classer require annotated training data. During anno-
tation we impose the semantic relationships among the words
and word groups in a hierarchical manner. The classer data is
composed of the original sentence annotated with classes. The
parser data is based on the classed sentences, and is annotated
with meanings of the constituents. The decision tree based
statistical classer/parser uses the training data to assign proba-
bilities to each node and extension in a classer/parse tree [11].

The parser works in a left-to-right and bottom-up fashion. At
any given step, the parser performs feature value assignment
corresponding to a parser action. The parser looks for the left-
most word that needs a tag, tag that needs to be extended to a
label, and then applies the model to complete the necessary ac-
tion. Each parser action is assigned a probability given the cur-
rent context. An example of classer and parser output is shown

in Fig. 1. As seen in the figure each word is assigned a tag and
certain tags are grouped under a label to form a constituent.

For the sake of simplicity we consider only the four main
feature values. Let refer to the 4-tuple
feature values at the th node in the current parse state. These
feature values are “label” , “word” , “tag” , and
“extension” . The probability distribution for each feature
value is estimated using conditional models.

A tag is a leaf node in a parse tree. The tag feature value
prediction is conditioned on the two words to the left, the two
words to the right, and all information at the two nodes to the
left and two nodes to the right [23]

(1)

The label feature value prediction is conditioned on all the
information in the two nodes to the left and two nodes to the
right, from the two leftmost and two rightmost children of the
current node

(2)

Extension features are the directions of the connections be-
tween two nodes. These features can take one of the four pos-
sible values: left, right, up, and unary. For example, in the con-
stituent “los angeles california” in part A of Fig. 1, the extension
feature value for the word “los” is right, for “angeles” up, and for
“california” left. The extension feature value unary is reserved
for the case where a tree node extends directly up to another
tree node, as in the case of “fly” in the same tree. An extension
probability represents the probability of placing an extension
in one of the four directions between the current node and its
parent node given the “context” as given in (3). Likewise, the
extension feature value prediction is conditioned on the current
node information that is being extended, all information from
two nodes to the left and two nodes to the right, and the two
leftmost and two rightmost children of the current node

(3)

We describe how some of these feature value predictions are
used as semantic features for confidence measurement in Sec-
tion IV-A.

The parser learns the characteristics of a sentence that lead to
certain tags, labels, or extensions. Classing can be considered
as shallow parsing. The classer output is used as input to the
parser. Therefore, parsing in essence is a two step process. The
function of the classer is to group together the words that are
part of a concept. The parser takes the classer output and builds
a hierarchical full semantic parse tree. The corresponding parse
tree for the classer tree is given in Fig. 1. Here, semantically
related concepts are grouped at a higher level. The statistical
parser uses the training data to examine the training sentences
to find the best combinations of sentential clues that works best
across all the training sentences [10].
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A parsing tree is represented as a connected, single-rooted
graph with feature values at each node. The probability of a fea-
ture value assignment at a particular node in principal is condi-
tioned on the information available at other nodes in the partially
constructed tree. The parser assigns probability to a parse tree

given the sentence .
The probability of a complete parse tree of a sen-

tence is the product of probabilities of feature value
prediction made to build the tree. Let denote a decision
for a feature value assignment at the th node. The proba-
bility of the decision is defined on the following set:

.
Each decision is conditioned on all previous decisions. The prob-
ability of a parse tree given the sentence is given below [23]

(4)

where is any allowable parser action. For example, it may
be assigning a specific tag to a word, or assigning a specific
label to a node in parse tree or an extension from a tag to a label
or from label to a parent label. Each decision sequence defines
a unique parse and the associated cumulative probability. The
parser selects the one with the maximum probability.

III. MAXIMUM ENTROPY BASED SEMANTIC STRUCTURED

LANGUAGE MODELING

The Maximum entropy (ME) method presents a framework
to combine multiple overlapping information sources in an ef-
fective way. Each such knowledge source gives rise to a set
of constraints that is imposed on the combined model. These
constraints are typically expressed in terms of marginal distri-
butions. The intersection of all the constraints contains a set
of probability functions which are consistent with the knowl-
edge sources or the feature expectations. Among these proba-
bility functions the ME approach chooses the function with the
highest entropy. ME has been widely used in statistical language
modeling [17], [22]. Because of the convenience of combining
multiple information sources, ME has also been used for syn-
tactic structured language modeling [20] and semantic struc-
tural language modeling [19]. ME modeling matches the feature
expectations exactly while making as few assumptions as pos-
sible in the model. ME modeling presents a unified framework
to combine lexical and semantic content and the structure of the
sentence in an effective manner. Therefore, we can assign a joint
probability to each word based on its lexical and the semantic
history. We have used a classer and a parser to extract semantic
content of a sentence.

In the ME framework we can view each information source as
defining one or more subsets of the event space , where

is a word and is the history associated with . We asso-
ciate a constraint with each subset to satisfy a certain statistic
of the training data over that subset of the event space. The ME
method combines the multiple information sources in the fol-
lowing way:

(5)

where is the current word, are the feature constraint func-
tions (or indicators) that are activated for a certain history and
defined as

if and
otherwise

(6)

where represents the history which may include previous
words as well as tags and labels that can be used in predicting
the current word. Here is a subset of the event space. In
[1], we used ME to model sentence based syntactic and se-
mantic information. Semantic information is obtained from
the semantic classer and parse trees. We computed the joint
probability of a word sequence and a parse tree: [1].
The first step in building the Maximum Entropy model is to
represent a classer/parse tree as a sequence of words, tags, and
labels. The labels are divided as begin-label and end-label.

Basically, this representation (an example is given in Section
IV-A along with the token probabilities) is equivalent to en-
riching the original text with tags and labels. This representation
allows us to define the boundaries for the semantic constituents
and take long range semantic information into account. Each
token is an outcome of the joint model. Since the tags are al-
ready included in the classes used in the class-based language
modeling, we ignored them in our analysis. In [1], we proposed
a set of maximum entropy based structured language modeling
(MELM) techniques: MELM1, MELM2, and MELM3.

MELM1 is the ME counterpart of an ordinary n-gram lan-
guage model. MELM2 and MELM3 include semantic informa-
tion besides lexical information. MELM2 and MELM3 differ in
the level of semantic analysis employed. From now on we will
use MELM’s when we refer to both MELM2 and MELM3. In-
terpolating MELM’s with the class-based trigram provided sig-
nificant improvement over a sophisticated class-based language
model [1]. These improvement are due to the inclusion of new
semantic information that was not part of the original speech
recognition system.

IV. SEMANTIC CONFIDENCE FEATURES

The issue that we want to address is what are the best fea-
tures that can be obtained from semantic analysis. These fea-
tures should be statistically based to combine with the proba-
bilistic features from the speech recognition component. In pre-
vious studies the semantic information is mainly modeled in the
form of slot/concept sequences, the coverage of the words by the
parser, and the features derived from these forms [3], [8], [2],
[14], [12]. However, some of the scores attributed to words are
ad hoc and there is not a clear interaction in the modeling be-
tween lexical and semantic content of the sentence. Our approach
differs from these studies in the following ways: the amount of
semantic information used, tightness of the integration of lex-
ical and semantic information and statistical modeling of lex-
ical and semantic information. We propose two techniques which
have these properties. The first technique is based directly on the
classer or parse tree. The second technique is based on Maximum
Entropy based statistical modeling of lexical and semantic infor-
mation obtained from the classer/parse tree. Next, we discuss the
first technique and how the semantic features are obtained.
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Fig. 1. Classer and Parser outputs for an example sentence. (a) Eexample of a semantic classer output. (b) Parser output for the same example.

A. Semantic Tags, Labels, and Extensions

The classer/parser performs a left-to-right bottom-up search
to find the best parse tree for a given sentence. During search,
each tag node, label node, and extension in the parse tree is as-
signed a probability. The node probability represents the prob-
ability of assigning a feature value to it given the “context” as
given by (1) and (2). Similarly, an extension probability repre-
sents the probability of placing an extension in a certain way
between the current node and its parent given the “context” as
given in (3). When the parser is conducting the search both lex-
ical and semantic clues are used to generate the best parser ac-
tion. The degree of confidence while assigning the tag and label
feature values is reflected in the associated probabilities. If word
does not “fit” in the current lexical and semantic context, its tag
and label are likely to be assigned low probabilities. Therefore,
using these probabilities as features in the confidence measure-
ment is a viable way to capture the semantics of a sentence.

In our analysis we extracted features from both the classer and
parse trees. For word level confidence measurement we consid-
ered tag and extension features from both trees. The following
set of statistical semantic features are extracted:

(7)

where and denote classer and the parse trees, respectively.
Here cTag and cTagExt denote the classer tag and tag extension
probabilities, respectively. Likewise pTag and pTagExt denote
the parser tag and tag extension probabilities, respectively. The
example in Table I shows the classer tree given in Fig. 1 in text
format along with the node and extension probabilities. This
sentence is from the DARPA Communicator air travel reserva-
tion domain. In this domain the number of tags is proportional
to the number of concepts in the task. All the words belonging to
a concept are tagged with a related tag. All the remaining words
that are not part of a concept are tagged as word. There is even
smaller number of labels for the classer. These labels include
LOC, DATE, TIME, NUMFLT, AIR, PRICE, CLASS.

Each term in the representation given in Table I is called a
token. Note that each token is assigned a pair of probabilities.
The first probability is for the node and the second probability
is for the extension. In the table, “0.960 17” is the classer tag
probability (cTag), and “0.995 701” is the classer tag exten-
sion probability (cTagExt) probability for the word “california.”
Similarly, the corresponding parser tag (pTag) and parser tag
extension (pTagExt) probabilities are extracted from the parse
tree. In the beginning of the sentence “:NONE” indicates the
dialog state for the sentence. The probability of the classer tree
given in Table I is 0.851 88, which is the probability of the best
classer tree among all the possible set of trees that can be as-
signed to this sentence. This probability is obtained according
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TABLE I
NODE AND EXTENSION PROBABILITIES FOR THE CLASSER TREE

TABLE II
NODE AND EXTENSION PROBABILITIES FOR THE PARSE TREE

to (4) by multiplying all the node and extension probabilities
given in the Table I. Potentially, any of the probabilities in this
tree can be used as a semantic feature. For the classer tree we
decided to use only the tag and tag extension probabilities. Note
that classer labels become tags when classer outputs are fed into
a parser. The corresponding parser output for the same sentence
is given in Table II in text format.

In Table II, words that are not part of any concept are assigned
the null tag. The parser performs detailed semantic analysis.
For example words grouped under LOC are distinguished
as LOC-FR (departure location) or LOC-TO (destination
location). Moreover such semantically related concepts as
LOC-FR and DATE-DEP (departure date) are grouped under
SEGMENT. Likewise, we use tags and tag extension prob-
abilities as our confidence features at the parser level. Our
statistical parser requires a end-of-sentence marker (a “.”)1

The classer assigns a pair of probabilities to each word.
However, the parser assigns a pair of probability to classer
concepts and the remaining words. LOC-FR and DATE-DEP
given in the parse tree shown above are examples of classer
concepts. The parser probabilities for the words are derived
in the following way. Assume that a sentence, has the fol-
lowing word sequence: . The classer
chunks the word sequence and generates a concept sequence:

, where , for the parser input. The
and probabilities are assigned to word

according to the following relationship:

(8)

1That is the reason why the sentence is augmented with a period at the end
although it was not part of the original sentence.

where and are the concept tag and
tag extension probabilities, respectively. These probabilities
are assigned by the parser. Therefore the 4-tuple probabil-
ities extracted from the semantic analysis for word is

.

B. MELM2 Features

MELM2 is one of the language models proposed in [1] and
employed seven types of questions about the current token in a
sentence [1]. In addition to regular n-gram questions for trigrams,
four more questions are used regarding the semantic structure of
the sentence. MELM2 uses only the semantic classer tree. There-
fore questions regarding the semantic content of the sentence are
limited to classer labels and tags. The set of semantic questions
used for MELM2 modeling is given as follows:

• current active parent ;
• and number of words to the left since starting the

current constituent, ;
• , and previous word token, ;
• the previous completed constituent and number of

words to the left since completing .
The history given in (5) above consists of answers to n-gram and
these questions. The language model score for a given word in
MELM2 model is conditioned not only on the previous words
but also tags, labels, and relative coverage of these labels over
words. Therefore the MELM2 probability can be computed as
follows [1]:

(9)

where and is a his-
tory dependent normalization term. Note that is the unigram
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history for the current token . Note that MELM2 is defined
on the token sequence. MELM2 presents an effective statistical
method to combine word sequences with the semantic classer
tree. Therefore we can use the MELM2 score as a feature for
confidence measurement. However, MELM2 for a given word
only depends on the previous word sequence and the parse tree
up to that word.

In [6], it is observed that on a subset of the Switchboard de-
velopment test data correctness on the current word has a sig-
nificant effect on the correctness of the next word. For example,
the next word is correct 87% of the time when the current word
is correct and only 48% of the time when it is incorrect. Even
though it is a different data set, this observation suggests that
we can expect a low score for the current word if the previous
word is recognized incorrectly. We can incorporate the context
information into confidence measurement as follows.

Assume that a sentence is represented by the following token
sequence, with the actual word sequence,

. Since there is always a begin and end
root label for any sentence, . Let be

the size of the history of the current token. Then, we define
an augmented token sequence as with the
following constraint:

(10)

where . We define the token context
around the current word, , by the -tuple

. Assuming an equal
context size on both side of a word, the -tuple score
representing a word is formed with the following relationship:

(11)

where and . For our experiments
we considered and . When is set to 1, besides
the MELM2 score for the current word , we consider
the scores of the left and the right neighbors of leading to
triple scores: . This feature is named MELM2-
ctx3 implying a context of three. Similarly when we con-
sider two neighbors to the left and two neighbors to the right of
the current word leading to the 5-tuple .
This feature is named accordingly MELM2-ctx5. In our exper-
iments we also considered only words rather than tokens as the
neighbors, however the performance was inferior to those of
having tokens as the neighbors.

C. MELM3 Features

MELM3 combines semantic classer and parser and uses a full
parse tree [19]. The full parse tree presents a complete semantic
structure of the sentence where in addition to classer informa-
tion semantic relationships between the constituents are also de-
rived. The following features are used to train a Maximum En-
tropy based statistical model:

• unigram history, ;
• previous word, ;
• two previous words, and ;

• current parent label, and the number of words to the
left since the start of the constituent, ;

• , and the current grandparent label, ;
• the most recent completed constituent, and number

of words to the left since completing .
Although the trees that the questions are based are different,

MELM2, and MELM3 share similar questions. Indeed, only
the fifth question of MELM3 is not included in the MELM2
question set. Note that even though these specific question sets
are selected for MELM2 and MELM3, any question based on
classer and parse trees can be a legitimate choice in Maximum
Entropy modeling. We experimentally determined these ques-
tion sets to be performing well. Inclusion of additional questions
did not improve the performance for the current task. Similarly,
we can take the context into account by defining an array of
scores centered on the current score. We consider MELM3-ctx3
and MELM3-ctx5 as the counterparts of MELM2-ctx3 and
MELM2-ctx5, respectively.

D. Posterior Probability Computation

The posterior probabilities are obtained from the sausages
[13], A sausage is a simplified word graph with a specific
topology. Generation of sausages from the word graphs is mo-
tivated by minimizing the word error rate rather than sentence
error rate. The standard speech recognition objective function
is based on maximizing the posterior probability of the word
sequence given the acoustic information, .
However, the performance metric, word error rate (WER) is an
edit distance between a hypothesis and the reference string

. The new objective to minimize is the expected WER given
the posterior distribution [13]

(12)

A practical solution to this new hypothesis selection method is
proposed in the form of sausages. The word graph is converted
into a sequence of confusion sets along time. Each confusion set
consists of a group of words, which are competing hypotheses
for a certain time interval. The posterior probabilities for each
word is obtained by summing the probabilities of all the paths
containing that word. In each confusion set the sum of posterior
probabilities is one. Parts of a sausage for the example sentence
used so far are shown in Fig. 2.

As seen in the figure there are several alternative word
hypothesis in each bin providing a compact representation of
the competing hypothesis generated by the speech recogni-
tion engine. Here, refers to “epsilon” transition, which
provides costless transitions across bins. The name “sausage”
comes from the fact the graph in Fig. 2 resembles a sausage in
its literal sense.

V. FEATURE COMBINATION

The speech recognition acoustic and language model vocabu-
laries contain compound words that help to improve the system
performance. The semantic analysis step on the other hand does
not contain any compound words. It even splits such words as

into and and associates a
pair of probabilities with each of the component words. The
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Fig. 2. Sausage generated for an example sentence.

Fig. 3. Word alignments between two word sequences.

word unit is also different for the MELM2 based features. The
issue here is what to use as a word unit and how to associate
probabilities coming from different sources with these words.

Assume that and are two realizations of the same sen-
tence differing in the compounding of the word sequence. Let

and be the
word sequences generated by the first and the second sources,
respectively. Note that any of the words can be a set of words
(compound word) in both sequences. The alignment between
these sequences can be a general one as shown in Fig. 3.

First we determine the alignment between and . We gen-
erate a combined word sequence using the alignments between
the sentences via the following relationship:

(13)

where and are aligned to each other. The probabilities
belonging to ’s are inherited from the probabilities of the
aligned segments. For example, for the first line of the equation
given above is assigned the probabilities corresponding to

as well as . Note that in this case is assigned the same
probability for each probability. The same method can

be extended to more than two feature streams.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We have carried out experimental investigations of confi-
dence measurement on the IBM DARPA communicator system
[9]. MELM’s (both MELM2 and MELM3) and baseline class
based language models are trained on 137 K sentences in the
air travel domain. An additional 18 K sentences are used for
smoothing of the class based language model. The MELM’s
are trained using the improved iterative scaling algorithm
using fuzzy smoothing [1], [17]. The confidence measure-
ment training data is formed by pooling eight other DARPA
communicator sites’ evaluation data. This data was from the

calls received by those Communicator systems during the
National Institute of Standards (NIST) June 2000 evaluations.
The corresponding evaluation data for the IBM DARPA Com-
municator system is used as test data. Note that many of these
communicator sites have different dialog strategies. Although
the task is the same, the dialog questions and the answers can be
quite different. Having no overlap within the training and test
data as far as the systems are concerned adds one more degree
of difficulty to our experiments. The confidence training data
consist of 10 640 sentences and 28 666 words. The test data
consist of 1173 sentences and around 3600 words. Therefore
an average sentence contains about 2.7 words. The acoustic
models are trained using air travel and generic telephony data.
A separate class-based trigram language model with deleted
interpolation is trained on the MELM’s training and held-out
data and used during speech recognition.

For each sentence in the confidence training and test data,
a sausage is generated and the consensus hypothesis, which is
the best path from the sausage, is hypothesized as the speech
recognition output. The best path computed based on the pos-
terior probability resulted an average 1.4% improvement over
the confidence measurement training and test data compared to
simple Viterbi-based decoding (21.1% versus 19.7%). This is
consistent with the results obtained on other tasks [13]. Each
word/concept is labeled as correct (“1”) or incorrect (“0”) after
aligning the hypothesis with the reference transcript. All the
recognition hypotheses are classed using statistical semantic
classer and parser. Each sentence is scored with MELM’s to
assign semantic probabilities to each word. The corresponding
semantic features are extracted for all the words in the sen-
tence. All of the positive (correct recognition) and negative
(misrecognition) examples are pooled in two sets.

There are a number of studies comparing such classifiers as
Neural Networks, Decision Trees and Support Vector Machines
(SVM’s) [2], [8]. Depending on the particular application a spe-
cific classifier can marginally outperform others with the tuning
of its parameters. However, results in general indicate that these
classifiers perform similarly [2], [8]. In our experiment we used
a decision tree algorithm to classify the positive and negative
examples. The decision tree has used the raw scores of each
feature. In our decision tree algorithm, the tree is grown by par-
titioning the data recursively in each node until either the node
becomes homogeneous or the node contains too few observa-
tions . We have used other minimum observation count
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Fig. 4. Word level ROC for combination of posterior probability with MELM2
based features.

thresholds to maximize the performance for all the experiments.
However, the performance did not change significantly as long
as the threshold is set in the range of 50–500. In order to predict
the correctness of a word from the features, one follows the path
from the root, to a leaf, according to splits at the interior nodes.

It is useful to have a single measure of performance for
confidence measurement. The Equal Error Rate (EER) is one
such measure. EER is the operating point on an Receiver
Operating Characteristic (ROC) curve where False Acceptance
(FA) is equal to False Rejection (FR). However, for spoken
dialog systems it is not a useful operating point as one needs
to accept as many correct words as possible at a very low
False Acceptance (FA) rate. Our observation of user behavior
with this and similar systems led us to believe that FA rates of
5–10% is the likely operating range for dialog systems. The FA
and CA are calculated using the following formula:

#
#

#
#

(14)

Next, we conducted three sets of experiments. The first set
measures the confidence using lattice based posterior proba-
bility as baseline and the proposed classer/parser and MELM
based features at the word level. In the second set, the effect of
including dialog state (DS) explicitly on the confidence mea-
surement is investigated. The last set of experiments measure
the confidence at the concept level.

A. Word Level Confidence Measurement

Word level confidence measurement refers to associating
a score or probability with each word. In Fig. 4, we present
the ROC curves for MELM2 based features. Here, MELM2
refers to the language model score for a given word, and
MELM2-ctx3 refers to MELM2 score of context three where
previous and the next scores are included as part of the current
score. Similarly, MELM2-ctx5 refers to a window of five
scores around the current score. Including context around the

TABLE III
CORRECT ACCEPTANCE (CA) RATES AT 5% AND 10% FALSE ACCEPTANCE

(FA) RATES FOR MELM2 BASED FEATURES

Fig. 5. Word level ROC for posterior probability, classer, and parser based
features.

current word improves the MELM2 performance. For example,
MELM2-ctx3 outperforms MELM2 by 16% and 6% at 5% and
10% FA rates, respectively. Note that in general MELM2-ctx5
does not perform as well as MELM2-ctx3. We attribute this
to short sentences (average of 2.7 words per sentence). In ap-
plications where the average word count in a sentence is large
including context information may be beneficial. Combining
MELM2 based features with the posterior probability improves
the CA rate significantly. For example at 5% FA rate the CA
rate for MELM2-ctx5 combined with the posterior probability
is 14.6% better than posterior probability alone. Note that the
most interesting part of the ROC curves for dialog systems
is between 5–10% FA rate, and the feature combination is
particularly effective in this range. Although the performance
based on individual MELM2 features alone is fairly low com-
pared to posterior probability alone, when combined with the
posterior probability the overall result is improved. MELM2
based features clearly add complementary new information to
posterior probability information. We extracted the CA rates at
5% and 10% FA rate from the ROC curve and presented them
in Table III. The best improvement at 5% FA is 14.6% when
posterior probabilities are combined with MELM2-ctx5.

The results for the classer/parser based features are shown in
Fig. 5. The features considered here are cTag, cTagExt, pTag,
and pTagExt. Although there are a number of combinations of
these features among themselves and with the posterior proba-
bility, not all of them are included in Fig. 5. The performance
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TABLE IV
CORRECT ACCEPTANCE (CA) RATES AT 5% AND 10% FALSE ACCEPTANCE

(FA) RATES FOR CLASSER/PARSER BASED FEATURES

of the some of the remaining combination are given in Table IV.
Even though the relative improvement of these features when
combined with posterior probability is similar, the best perfor-
mance is obtained when posterior is combined with pTag and
pTagExt. At 5% FA rate they outperformed posterior proba-
bility by 13%.

At high FA rates room for improvement shrinks rapidly.
The improvement in CA for both feature sets at 10% FA rate
is moderate (4–5%). Note that the posterior probability has
different CA rates at the same FA rates in Tables III and IV.
This is because of the fact that some of the compound words
used by classer/parser and MELM2 are different. For example,
“BUFFALO_NEW_YORK” is a single unit for posterior prob-
ability and MELM2 but it is three units: “BUFFALO,” “NEW,”
and “YORK” for classer/parser. As explained in Section 5, the
classer/parser assigns the tag and extension probability to each
of these words. Therefore the same posterior score is repeated
three times when combined with the classer/parser scores. As
a result total number of positive and negative examples are
different for MELM2 and classer/parser based feature sets that
lead to different ROC for the posterior probability. Therefore
ROC curves in each figure should be considered only within
that figure rather than across figures.

Next, we compared MELM3 based features with the posterior
probability. The MELM3 based features are the counterparts
of MELM2 based features. Since MELM2 and MELM2-ctx3
marginally outperformed MELM2-ctx5 when combined with
the posterior probability, we combined MELM3 and MELM3-
ctx3 features with the posterior probability. The ROC curves are
plotted in Fig. 6. Combining these features with the posterior
probability improved the CA rate significantly when the FA rate
is less than 10%. The CA rates at 5% and 10% FA rates are
given in Table V. The improvement is similar to those of the
MELM2 based features. Although in [19], we determined that
MELM3 outperformed MELM2 for certain data sets, we do not
have any evidence that MELM3 outperforms MELM2 (or vice-
verse) for confidence measurement. Therefore, next we combine
the dialog state information explicitly with only MELM2 based
features and the posterior probability.

B. Word Level Confidence Measurement With Dialog State

It has been shown that including dialog state or speaker turn
information in language modeling improves the speech recog-

Fig. 6. Word level ROC for posterior probability, and MELM3 based features.

TABLE V
CORRECT ACCEPTANCE (CA) RATES AT 5% AND 10% FALSE ACCEPTANCE

(FA) RATES FOR MELM3 BASED FEATURES

TABLE VI
DESCRIPTION OF THE CONFIDENCE MEASUREMENT TRAINING DATA

WITH RESPECT TO DIALOG STATES

nition performance [7], [24]. As given in the example in Section
IV-A every sentence in the confidence measurement training
and test data is tagged with a dialog state. Therefore the parser
and the classer based features use dialog state information. On
the other hand, neither the MELM or class-based trigram lan-
guage model training data have information regarding the di-
alog state. Therefore the MELM based scores are not based on
the dialog state information. However, the decision tree building
algorithm allows one to combine multiple information sources.
We combined MELM2 based features with the dialog state in-
formation by including it as an additional feature. Although, di-
alog state information is used to compute the classer and parser
features, we wanted to use it explicitly as an additional feature
in the decision tree building process. The dialog states or the
parser feedback tags are DATE, DONE, NONE, LIST, TIME,
LOC. A list of the parser feedback tags (dialog states) with their
frequency of occurrence is given in Table VI.
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Fig. 7. Effect of DS feature on classer/parser and MELM2 based features.

The ROC curves showing the effect of Dialog State (DS) as an
additional feature is shown in Fig. 7. Based on the figure DS in-
formation did not improve the performance of the classer/parser
based features as well as MELM2 based features. This may
be due to very few dialog states (only six). Although we have
detailed dialog states we wanted to avoid fragmenting already
small amount of training data (around 10.6 K sentence).

C. Concept Level Confidence Measurement

In spoken dialog systems it is not important if each and
every word is recognized correctly. However, it is important if
the words that are part of a concept are recognized correctly.
Therefore, confidence measurement at the concept level is par-
ticularly important for spoken dialog systems. The concept is
defined as the combination of word(s) belonging to a label
in a classer tree. Our natural language understanding (NLU)
system attempts to capture a limited number of concepts from
the recognition hypothesis. The classer covers 19 concepts. A
concept can span just a single word as well as a sequence
of words. The semantic classer in essence finds the concepts
in a sentence by grouping words that form a concept. We
have 17 concepts: {AIRLINE, CLASS, AIRCRAFT, DATE,
DATE-TIME, DURATION, LOC, MEAL, NAME, NUM-FLT,
NUM-PASSENGER, PRICE, RT-OW, RULE, STOPS, TIME,
TRANS}.

In order to assign posterior probability based confidence to
the concepts, the posterior probabilities corresponding to con-
stituent words are multiplied as

(15)

where is a concept, and are the posterior probability
of word and , respectively. There are several ways to obtain
a concept score from the classer. For example, one can multiply
all the probabilities between begin-label and end-label: classer.
We can also normalize the final overall probability with the
number of words spanned by the classer concept: norm-classer.

Both of these scores can be expressed in the following equation:

(16)

where is the concept score, is a token as defined in Section
4.2 and is the number of tokens spanned by concept . If

and ’s are constrained to be just words, we obtain
a classer score. If and ’s are either word or label,
we obtain a norm-classer score. Furthermore, we can combine
classer concept probability with the corresponding parser pTag
and pTagExt probabilities.

Extracting the concepts from the confidence training data
resulted in 6855 concepts. The concept count for the test
data is 919. All the words that are not part of any concept
are eliminated. The decision tree is rebuilt using this concept
training data and tested on the corresponding concept test data.
Among all these possible alternatives combining posterior
probability with the classer gave the best performance. In
Fig. 8, we present the ROC curve for posterior probability,
classer concept probability (classer) and their combination.
ROC curves show that at the same False Acceptance (FA)
level the Correct Acceptance (CA) rates are lower compared to
word level confidence measurement. This is due to bias toward
misrecognition. For example if any of the words is misrec-
ognized in

the DATE concept is assumed to be mis-
recognized. The ROC curves for concept level confidence
measurement are not as smooth as those of the word level
confidence measurement. This is mainly due to limited amount
of concept test data. However, combination of posterior proba-
bility with the classer improved results significantly compared
to that of posterior probability alone. The ROC curves are
sampled at 5% and 10% FA rates and presented in Table VII.
The improvement surpasses all the improvements obtained at
the word level confidence measurement. For example at 5% FA
rate a 20% absolute improvement (61% relative improvement)
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Fig. 8. Concept level ROC for posterior probability versus classer probability.

TABLE VII
CONCEPT LEVEL CORRECT ACCEPTANCE (CA) RATES AT 5% AND 10% FALSE

ACCEPTANCE (FA) RATES FOR POSTERIOR AND CLASSER BASED FEATURES

in CA rate over posterior probability is obtained. Intuitively,
this is a very satisfying result, as we expect to see greater
contribution of the semantically based features when combined
with the posterior probability at the concept level.

VII. CONCLUSIONS

We proposed two methods to generate word level semantic
features and integrate them with a lattice based posterior
probability feature in a principled manner. The first set of
semantic features consists of tag and tag extension probabil-
ities for statistical classer and parse trees. The second set of
semantic features are derived from the maximum entropy based
semantic structured language models (MELM2 and MELM3)
with variable context around a given word. The semantic
features brought complementary information to speech recog-
nition information summarized by the posterior probability.
For the word level confidence measurement combination of
these features with posterior probability provided an absolute
improvement of around 13–14% for Correct Acceptance at
5% False Acceptance rate over posterior probability. Classer
concept probabilities are combined with the posterior proba-
bility at the concept level. Compared to baseline, at 5% FA rate
semantic features gave a 20% absolute improvement in CA
rate. In the future, we plan to apply the proposed methods to
additional domains to further demonstrate the validity of the
approach.
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