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Abstract

Although algebraic or so called “implicit polynomial” curves/surfaces have
been studied rather extensively for several decades, to the best of our knowl-
edge, a dynamic formulation of them, similar to active contours, has not been
done yet. This paper proposes to use implicit polynomial functions instead
of signed distance functions in classical level set formulation and shows po-
tential of such representations. In particular, it is shown that utilization of
an implicit polynomial distance function in the level set equation yields an
ordinary differential equation (ODE) for the temporal behavior of the poly-
nomial coefficients. Using a control theoretic approach, several problems
such as curve morphing, dynamic conic fitting without and with constraint,
i.e. dynamic ellipse fit, and dynamic curve fitting can be tackled within this
new framework. Results are verified by several examples on real images.

1 Introduction
To model and track evolving interfaces is an important problem in several disciplines
including vision and computational physics. Since the seminal work of Kass et al. [1],
several active contour paradigms have been developed [2]-[4]. Much recent work has
focused on evolving interfaces using a PDE based approach, i.e. level set formulation [5]-
[7]. Applications include image restoration, segmentation, image inpainting and image
classification.

Algebraic curves and surfaces have been used in various branches of engineering for a
long time, but in the past two decades they have proven very useful in many model-based
applications. Various algebraic and geometric invariants obtained from implicit models of
curves and surfaces have been studied rather extensively in computer vision, especially for
single computation pose estimation, shape tracking, 3D surface estimation from multiple
images and efficient geometric indexing of large pictorial databases [8]- [11].

Although there has been extensive work on algebraic curves and surfaces, to the best
of our knowledge, there is no work on evolving algebraic curves/surfaces. This paper, we
hope, would perhaps initiate a strategy for evolving implicit polynomial curves/surfaces.

In this work, we propose to use implicit polynomial level set functions instead of
signed distance functions in the classical level set formulation and show potential of such
representations. Utilization of an implicit polynomial function in the level set equation
results in an ordinary differential equation (ODE) for the temporal behavior of the poly-
nomial coefficients. Using a control theoretic approach, we will show how to morph a
curve, how to develop a dynamic conic fitting algorithm without constraint and with con-
straint, i.e. dynamic ellipse fit, and how to develop a dynamic fitting method for higher
degree curves.



Organization of this paper is as follows: In Section 2, we present evolving implicit
polynomial interfaces using the level set equation and obtain an ordinary differential equa-
tion (ODE) for the temporal behavior of the coefficient vector of the polynomial. In Sec-
tion 3, we outline a new procedure for curve morphing and provide several examples. In
Section 4, we introduce a dynamic conic fitting method without and with constraint. Ex-
perimental results on real images are also given. In section 5, a dynamic fitting technique
for higher degree curves is developed and verified by an example. Section 6 concludes
the paper with some remarks and shows future directions.

2 Evolving Implicit Polynomial Interfaces
We are interested in how implicit polynomials curves/surfaces can be used in the level
set framework [6]. The level set equation is given by the following Partial Differential
Equation (PDE):

Φt +∇ΦTV = 0 (1)

where Φ is the level set function and V = (Vx,Vy) is the velocity of the interface. In the
literature, Φ is usually chosen as a signed-distance function [6]. In this work, we will
consider a degree d bivariate polynomial with time varying coefficients, namely

Φ(x,y, t) = ∑
0≤i, j;i+ j≤d

αi j(t)xiy j

=
(

xd xd−1y . . . 1
)

︸ ︷︷ ︸
mT

(
αd0 αd−1,1 . . . α00

)
︸ ︷︷ ︸

α

T = mT α (2)

where m is the vector of monomials and α is the coefficient vector. Substitution of (2)
into (1) implies

mT α̇ +(VxmT
x +VymT

y )α = 0 (3)

or,
mT α̇ +mT

g α = 0 (4)

where mx and my are the partial derivatives of the monomial vector m with respect to x
and y, and mg = Vxmx +Vymy. Writing (4) for N ≥ c interface points, we obtain

Mα̇ +Mgα = 0 (5)

where c = (d + 1)(d + 2)/2 is the size of the coefficient vector α , M is a N × c ma-
trix obtained by stacking vectors of monomials (m), and Mg is a N× c matrix of partial
derivatives obtained by stacking mg vectors. In practice, (5) will be satisfied only ap-
proximately, and therefore an Ordinary Differential Equation (ODE) which governs the
temporal behavior of the coefficient vector can be obtained as

α̇ =−M†Mgα (6)

where M† = (MT M)−1MT is the pseudo-inverse of M.
In light of (6), a discrete update rule for the coefficient vector can be obtained as

follows:
αk+1 = (I−∆tM†Mg)αk (7)

where ∆t is the sampling time.



3 Curve Morphing
Metamorphosis of curves can be defined as the gradual transformation of one curve into
another over time [12] and has an important role in many applications such as geometric
modelling [12], industrial design [13], creation of visual effects and computer animations,
etc. Here we metamorphose an initial curve of degree d1 to a final reference curve of
degree d2,

fd1(x,y)−→ f ∗d2
(x,y) , d1 ≤ d2 (8)

where fd1(x,y) and f ∗d2
(x,y) have c1 = (d1 + 1)(d1 + 2)/2 and c2 = (d2 + 1)(d2 + 2)/2

coefficients, respectively. For d1 < d2, the number of coefficients of fd1(x,y) will be
c2− c1 less than that of f ∗d2

(x,y). Let α and α∗ be the coefficient vectors of fd1(x,y) and
f ∗d2

(x,y), respectively. Since α and α∗ have different sizes, we introduce the following
augmented coefficient vector for fd1(x,y),

ᾱ =
(

ε . . . ε αT )T (9)

where α is preceded with c2− c1 extremely small positive numbers ε = 10−c2 .
In order to achieve metamorphosis, we define an error function in terms of the coeffi-

cient vectors
e = α∗− ᾱ (10)

By differentiating (10), we get
ė =− ˙̄α (11)

In light of (6), ˙̄α can be written as

˙̄α =−M†Mgᾱ =−M†u (12)

where u def= Mgᾱ . Recall that Mg was a function of the velocity of the interface, and
therefore we will treat u as a control variable. By imposing ė = −Λe, an exponential
decrease of the error can be realized by selecting the control variable according to

−Λe =−(−M†u) (13)

where Λ ∈ℜc2×c2 is a positive-definite gain matrix with the diagonal elements λi > 0 for
i = 1,2, . . . ,c2. Rearranging (13) we obtain the control variable as

u =−(M†)†Λe (14)

3.1 Examples
Figure 1 depicts the evolution of a circle ( f2) towards an ellipse ( f ∗2 ) whose coefficient
vector is

α∗ =
[

1 −1.2 1 0 0 −1.6
]T

Figure 2 shows convergence of the error and of the coefficients. The value of the α at
216th iteration is

α =
[

1.0000 −1.1994 1.0000 0.0009 0.0008 −1.5985
]T



Figure 1: Transition of a circle into an ellipse.
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Figure 2: (a) Exponential decrease of the error norm (b) Convergence of α towards α∗

Figure 3 depicts the metamorphosis of a circle ( f2) into an aircraft shape ( f ∗6 ). The
coefficient vector of f2 is defined as

α =
[

1 0 1 −2xc −2yc (x2
c + y2

c − r2)
]T

where (xc,yc) and r are the center and radius of initial circle. Similarly, the coefficient
vector of f ∗6 is given as

α∗ = [1 −0.407 −2.437 1.226 6.958 −0.451 0.465 3.762 −1.642 −10.212 . . .

0.767 −5.102 0.209 1.875 0.321 6.973 −0.842 −1.424 −6.505 1.281 . . .

4.846 −0.158 −4.238 0.25 0.539 3.908 −0.236 −1.014]T

Figure 4 shows convergence of the error norm for two different values of λi where i =
1,2, . . . ,28.

Remark We can increase or decrease the speed of transition and/or convergence by
playing with proportional gains, λi. Exponential decrease of the error can also be achieved
by nonlinear control laws.



Figure 3: Transition of a circle into an aircraft (λi = 2)
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Figure 4: Convergence of the error norm for λi = 2 (a) and for λi = 8 (b)

4 Dynamic Conic Fitting
We can fit an evolving conic f2(x,y) to an edge contour data X∗ = {(xi,yi)|Ni=1} by mini-
mizing the following error function

e = f2(X∗) = M∗α

e =




x2
1 x1y1 y2

1 x1 y1 1
x2

2 x2y2 y2
2 x2 y2 1
...

x2
N xNyN y2

N xN yN 1




︸ ︷︷ ︸
M∗




α20
α11
α02
α10
α01
α00




︸ ︷︷ ︸
α

(15)

where M∗ ∈ℜN×6 is the monomial matrix created from X∗ and α ∈ℜ6 is the coefficient
vector of the curve f2(x,y) which will evolve towards target data. In order to obtain the



error dynamics, equation (15) is differentiated with respect to time, which yields

ė = M∗α̇ (16)

Imposing ė =−Λe and substituting (12) into (16), we obtain

−Λe =−M∗M†u (17)

where Λ∈ℜN×N is a positive-definite diagonal gain matrix with diagonal elements λi > 0
for i = 1,2, ..,N. The control variable u can be derived from (17) as

u = (M∗M†)†Λe (18)

Figure 5 shows results of dynamic conic fitting on real images of a cup-mouth, a DVD,
and an egg along with some of their evolution curves. The initial positions of the curves
are marked by the user with a mouse. The edge contours of the objects are extracted using
a simple edge detection algorithm.

(a) (b)

(c)

Figure 5: Dynamic conic fitting on real images. Curves are evolving towards the bound-
aries of a cup-mouth (a), a DVD (b), and an egg (c)

4.1 Dynamic Conic Fitting with Constraint
In many cases, it may not be possible to obtain a sharp edge contour of the object due to
partial occlusions, noise from the vision sensors etc. The previous conic fitting algorithm
may not cope with such circumstances. In order to impose ellipse constraint in the fitting
process, we append the constraint α2

11−4α20α02 =−1, as proposed in [14], to the former
algorithm and rewrite the error function as

e1 = M∗α
e2 = αTCα +1 (19)



where M∗ ∈ℜN×6 is the monomial matrix as in (15) and C ∈ℜ6×6 is the constraint matrix
defined as

C =




0 0 −2 0 0 0
0 1 0 0 0 0
−2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(20)

to satisfy α2
11 − 4α20α02 + 1 = 0 in e2 of (19). The differentiation of the error system

yields,
ė1 = M∗α̇
ė2 = 2αTCα̇ (21)

which can be rewritten in matrix-vector form as

ė =
[

ė1
ė2

]
=

[
M∗

2αTC

]

︸ ︷︷ ︸
S

α̇ (22)

where S ∈ℜ(N+1)×6 is the new design matrix which is combination of the monomial and
the constraint matrices. Substitution of (12) into (22) implies

ė = Sα̇ =−SM†u (23)

Imposing ė =−Λe for the exponential decrease of the error, we get

−Λe =−SM†u (24)

where Λ ∈ ℜ(N+1)×(N+1) is a diagonal gain matrix with the elements λi|Ni=1 > 0 and
λN+1 > 0 to control the regulation of algebraic distances and the constraint, respectively.
Control variable u can be obtained by solving (24) as

u = (SM†)†Λe (25)

We now present some examples of this constrained dynamic conic fitting method. Figures
6 and 7 depict the results for an egg and a mouse contours with missing data due to partial
occlusion.

5 Dynamic Fitting of Higher Degree Implicit Curves
In this section, we will show how to evolve higher degree implicit curves for dynamic
fitting of complicated objects by utilizing the 3L curve fitting approach [15].

5.1 Dynamic 3L Fitting
Let L− = {(x,y) : fd(x,y) = −l} and L+ = {(x,y) : fd(x,y) = +l} be the inner and the
outer level sets for a degree d implicit polynomial curve fd(X∗) = 0 with X∗ being the
edge contour of the object. The following errors can be defined

e1 = M∗
−α + l̄

e2 = M∗α
e3 = M∗

+α− l̄
(26)



(a) (b)

Figure 6: (a) An egg contour with missing data (white) and initial curve (black), (b) result
of dynamic ellipse fit on the egg.

(a) (b)

Figure 7: (a) A mouse contour and the initial curve, (b) result of dynamic ellipse fit.

where M∗
− ∈ℜN×c and M∗

+ ∈ℜN×c are the level set monomial matrices of L− and L+, re-
spectively, and l̄ = [l, l, . . . , l]T ∈ℜN is the distance vector for level sets. Differentiating
the errors with respect to time yields

ė1 = M∗
− α̇

ė2 = M∗α̇
ė3 = M∗

+ α̇
(27)

ė =




ė1
ė2
ė3


 =




M∗
−

M∗
M∗

+




︸ ︷︷ ︸
S

α̇ (28)

Using (12) and imposing ė =−Λe, it follows that

ė = Sα̇ =−SM†u (29)

−Λe =−SM†u (30)

where Λ ∈ℜ3N×3N is a positive-definite diagonal gain matrix constructed as

Λ = diag(λ−1 , . . . ,λ−N ,λ1, . . . ,λN ,λ+
1 , . . . ,λ+

N ) (31)



Solution of (30) for the control variable u can be obtained as

u = (SM†)†Λe (32)

Figure 8 depicts the evolution of a circle into a van using dynamic 3L fitting. Initial curve
(circle) is defined by

α = [ε, . . . ,ε,1,0,1,−2xc,−2yc,(x2
c + y2

c − r2)]T ∈ℜ15

where r = 1.8, λ∓ = 6, λ = 4, ε = 10−4. Final curve is obtained as

α = [1,−0.2779,0.857,−0.8002,2.8879,−0.8112,1.9849,2.3037, . . .

−0.0116,−1.1576,2.8479,5.2185,1.3863,−1.3331,−1.3405]T
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Figure 8: (a) Evolution of a circle into a van, (b) error graph of ||e2||

6 Conclusion and Future Work
We have now formulated evolving implicit polynomial curves/surfaces. Specifically, we
have proposed to use implicit polynomial level set functions instead of signed distance
functions in the classical level set formulation. Utilization of an implicit polynomial func-
tion in the level set equation resulted in an ordinary differential equation (ODE) which
governs the temporal behavior of the polynomial coefficients. Introducing a control the-
oretic approach, we have shown how to morph a curve, how to develop a dynamic conic
fitting algorithm without constraint and with constraint, i.e. dynamic ellipse fit, and how
to develop a dynamic fitting method for higher degree curves.

As an extension, we are currently working on a full segmentation problem in which
one initiates an arbitrary closed-bounded algebraic curve, i.e. a circle or an ellipse, and
updates its coefficients according to the ODE mentioned above, and finally stops it on the
object boundary. Much work has to be done in this direction.
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