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ABSTRACT

Linear Discriminant Analysis (LDA) aims to transform an
original feature space to a lower dimensional space with
as little loss in discrimination as possible. We introduce a
novel LDA matrix computation that incorporates confus-
ability information between classes into the transform. Our
goal is to improve discrimination in LDA. In conventional
LDA, a between class covariance matrix that is based on the
scatter of class means around the global mean is used. By
rewriting the between class covariance expression in a more
revealing way, we unveil that each class pair is considered
equally confusable in the conventional LDA. We introduce
a weighting factor for each pairwise scatter that enables
to integrate the confusability information into the between
class covariance matrix. There are many possibilities to
choose the weighting factors. We consider few of them that
depend on Euclidean and Kullback-Leibler distances be-
tween classes when a single Gaussian approximation is used
for each class. The method combined with speaker cluster
based transformation decreases the error rate by about rel-
ative 10% on a large vocabulary speech recognition task
using IBM’s speech recognition engine.

1. INTRODUCTION

In order to reduce computation and to decrease the effects
of “the curse of dimensionality”, it is common to apply lin-
ear discriminant analysis (LDA) for statistical pattern clas-
sification tasks. The LDA transform attempts to reduce
dimension with minimal loss in discrimination information.
LDA is used for speech recognition as a part of the front-end
processing, because the computational complexity in speech
recognition highly depends on the dimension of the feature
space. On the other hand, feature spaces of higher dimen-
sion enable the acoustic model to carry more discriminant
information. In speech recognition, feature space dimen-
sion can be increased by extending the feature vector to
include a range of neighboring frame data. Doing this will
increase discrimination but computation becomes imprac-
tical. Applying LDA to the extended feature vector is very
necessary.

LDA has been used successfully in speech recognition,
mixed results were obtained [1, 2, 3]. There are a lot of
recent development, for instance [4]. In LDA, there are
some implicit assumptions as analyzed in Kumar’s work
[3]. Basically, LDA formulation assumes that each class
has equal within class covariance. Kumar formulated LDA
in a maximum likelihood framework and generalize it to
cases where the within class covariances are different. This
generalization is called Heteroscedastic Linear Discriminant
Analysis (HDA).

In this paper, we exploit another implicit assumption of
LDA. The between class covariance matrix in LDA assumes

that each class is equally confusable with all other classes.
This might not be obvious from the formula but we rewrite
the expression to reveal this property. The goal of this
work is to remove this assumption of LDA to achieve higher
classification performance and decoding accuracy. The re-
sulting transformation is called Weighted Pairwise Scatter
Linear Discriminant Analysis (WPS-LDA) transform.

In Section 2, we analyze conventional LDA formulation,
particularly focusing on the between class scatter matrix.
We point out a weakness of the conventional between class
scatter matrix and illustrate it with an example. In Sec-
tion 3, we define a generalization of conventional between
class scatter matrix as a sum of weighted pairwise scatter
matrices. This expression is the same as conventional be-
tween class scatter matrix if a uniform weight is used. The
necessity of using non-uniform weights for better discrim-
ination is discussed. We also consider appropriate weight
choices. It is explained how this could remedy the weak-
ness of conventional between class scatter matrix discussed
in Section 2. In Section 4, we discuss briefly cluster based
LDA transformations and its integration with WPS-LDA.
In Section 5, we discuss the application of WPS-LDA to
IBM speech recognition system. Experimental results using
various weights based on Euclidean and Kullback-Leibler
distances are presented and compared. Finally, in section
6, we discuss the restrictions of WPS-LDA and possibilities
for further improvement.

2. THE CONVENTIONAL LDA

The LDA problem is formulated as follows. Let x ∈ IRn be
a feature vector. We seek to find a transformation y = θx,
θ : IRn → IRp with p < n, such that in the transformed
space, minimum loss of discrimination occurs. In practice,
p is much smaller than n.

Assume {xi}1≤i≤N are N training feature vectors each
labeled as belonging to a class li ∈ {1 . . .K}. Let Nk =
∑

li=k
1 be the number of training vectors in class k. Then,

∑K

k=1
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define the following entities:
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where µk is the sample mean for class k, µ is the global
sample mean, Σk is the covariance matrix for class k and
Σ is the total covariance matrix. In some literature, for
instance [5], scatter matrices are used. Essentially they are
equivalent to covariance matrices except by a factor. For



example, the total scatter matrix [5] T = NΣ.

T =

N
∑
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N
∑
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T + (µli − µ)(µli − µ)T

)
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In classical LDA, the first term W =
∑K

i=1
NkΣk is called

within class scatter matrix and the second term
B =

∑K

i=1
Nk(µk − µ)(µk − µ)T is called between class

scatter matrix. If θ is a linear projection, then in the new
feature space, the within class scatter and between class
scatter become θWθT and θBθT respectively.

It is popularly accepted that the between class scatter
carries the discriminant information. The idea of LDA is
to maximize in some sense the ratio of between class and
within class scatter matrices after transformation. This will
enable to choose a transform that keeps the most discrimi-
native information while reducing the dimension. Precisely,
we want to maximize the objective function

max
θ

|θBθT |

|θWθT |
(1)

Fortunately, as well known, there is a close solution to this
optimization problem. The columns of the optimum θ are
the relative generalized eigenvectors corresponding to the
first p maximal magnitude eigenvalues of the equation

Bv = λWv. (2)

The following form of the between class covariance ma-
trix is taken for granted in the literature.

B =

K
∑

i=1

Nk(µk − µ)(µk − µ)T . (3)

This is a measure of how distributed the means of each class
is from the center. Intuitively, it is better to have a “bigger”
value of B since it shows that the classes are more spread
out in the transformed space, thus easier to discriminate
them. From this expression, it is not clear how the classes
are discriminated from each other pairwise. To illustrate
this point, we consider an example.
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Figure 1: Illustration of example 1.

Example 1: Suppose there are four classes in IR2,
each of them have same number of feature vectors and equal
variance. Let their means be:

µ1 = (1, δ) µ2 = (−1, δ)

µ3 = (−1,−δ) µ4 = (1,−δ)

This problem is illustrated in Figure 1. In this case, the
between class scatter matrix is

1

4
B =

(

1 0
0 δ2

)

−→

(

1 0
0 0

)

When δ → 0, the between class scatter matrix does not
contain any discrimination in the vertical direction. Only
discrimination is in the horizontal direction. We can say
that (it will be clearer in next section) the between class
scatter matrix is dominated by the covariance of the class
pairs other than (1, 4) and (2, 3). Obviously, regarding the
classification problem, the covariance of class pairs (1, 4)
and (2, 3) are more important than others since they are
more confusable, yet the conventional between class scatter
obviously does not capture this information. Therefore, we
conclude that the canonical method does not accurately
represent the desired discrimination information.

From above example, we can see that if there are some
classes much closer relatively as compared to others, the
between class scatter matrix mostly ignores the discrimina-
tory information between the classes that are close to each
other.

3. WEIGHTED PAIRWISE SCATTER LDA

The discussion in section 2 leads us to define a general
between class scatter matrix that is equal to the sum of
weighted “pairwise scatter” matrices.

Bw =
1

2N

K
∑

k,l=1

wklNkNl(µk − µl)(µk − µl)
T (4)

where {wkl} is a set of weights. wkl is a non-negative weight
assigned to class pair (k, l). wkl represents how important
it is to discriminate class k from class l.

At first glance, there does not seem to be much rela-
tion between equations (3) and (4). Let us assume uni-
form weights for each class pair, wkl = 1. In other words,
each pairwise scatter contribute equally to the between class
scatter matrix.
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=
1
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It is interesting that if we use uniform weight, the new be-
tween class scatter matrix (4) is exactly the same as conven-
tional between class scatter matrix. Therefore, it turns out
that the definition Bw is a generalization of conventional
between class scatter matrix.



With this new definition of between class scatter ma-
trix, it is easy to understand why canonical between class
scatter matrix ignores the information about the pairs of
classes which are close to each other in Example 1. In the
expression of Buniform, we just sum up the pairwise scatters
(µk − µl)(µk − µl)

T . Obviously, it is in favor of those class
pairs (k, l) with large (µk − µl) because later we search for
a relative eigenvector of Bv = λWv with relatively bigger
eigenvalue. It is unlikely that the contribution from pair
(k′, l′) can compete with the contribution from pair (k, l) if
µk′ − µl′ is much smaller compared with µk − µl. If such
a situation happens, we will lose the discriminant informa-
tion between classes k′ and l′. In fact, what is desired is
the opposite effect, that is the classes that are closer (or
more confusable) should be weighted more for maximum
discrimination.

3.1. Normalization Weight based on Euclidean Dis-
tance

In order to keep enough discriminant information, we need
to adjust the weights. A natural candidate is a normaliza-
tion weight equal to the square of the inverse of the Eu-
clidean distance between class means.

wkl =
1

‖µk − µl‖2
=

1

(µk − µl)T (µk − µl)

We weight the classes which have their means closer to each
other more than the ones which have means farther. In
this sense, more confusable classes are weighted more and
less confusable classes are weighted less. According to the
normalization weight, the between class scatter matrix is

Bnorm =
1

2N

K
∑

k,l=1

NkNl

(µk − µl)(µk − µl)
T

(µk − µl)T (µk − µl)
(5)

Next, we apply the above scatter to Example 1.
Example 1 (revisited) :
For the problem defined in example 1, the between class
covariance computed using (5) is now as follows:

1

4
Bnorm =

(

1 + 1
1+δ2

0

0 1 + δ2

1+δ2

)

−→

(

2 0
0 1

)

So, using the new between covariance matrix (5), no mat-
ter how close the pairs (1, 4) and (2, 3) are, we take their
spread into account in computing the WPS-LDA. This is
very desirable regarding the classification problem.

Once we get a new between class scatter matrix, we
solve equation (1) with the new between class scatter ma-
trix. The rest remains the same. We need to solve the
generalized eigenvector problem Bwv = λWv to compute
the WPS-LDA projection matrix θ.

3.2. Other Weights based on Euclidean Distance

It is possible to use other weights wkl. For instance, to em-
phasize the discriminant information for those classes close
to each other, we can use the square of the previous weights:

wkl =
1

((µk − µl)T (µk − µl))
2
.

With these weights, the between class scatter matrix of Ex-
ample 1 is

4Bw =

(

1 + 1
(1+δ2)2

0

0 1
δ2

+ δ2

(1+δ2)2

)

−→

(

2 0
0 +∞

)

So the closer are the class pairs (1, 4) and (2, 3), the
more we take them into account. It sounds reasonable in
theory, but it could be unstable in practice.

Actually, any decreasing function of a distance measure
can be applied as the weight, i.e. wkl = f(d(k, l)) where
d(k, l) is a metric between two classes k and l and f(·)
is a monotonically decreasing function in IR+. For exam-
ple, in the above choices we used d(k, l) = ||µk − µl|| and
f(t) = 1/t2 or f(t) = 1/t4. It is not clear what function
f(·) is the most appropriate one. This might require some
experimentation and might differ from system to system.

3.3. Kullback-Leibler Distance

The weights we introduced above do not consider the within
class covariances of each class in computing the distance
between them. Obviously, the variance can be a factor in
discriminating two classes. Thus, it makes sense to use a
distance measure that incorporates the covariance. When
each class is assumed to be normally distributed, we can
compute KL distance or divergence between them and use
it in the weights.

wkl = f(D(Pk||Pl)),

where Pk represents the Gaussian distribution for class k
and D(P ||Q) is the KL distance between two Gaussians and
f(·) represents a monotonically decreasing function. We
have used diagonal covariances for computational simplic-
ity.

4. SPEAKER CLUSTER BASED
TRANSFORMATIONS

In most speech recognition systems, it is advantageous to
cluster data into distinct groups and build a different speech
recognition system based on each cluster especially when
there is enough acoustic data for all. A typical clustering is
done by separating the training speakers into male and fe-
male clusters and training two sets of HMMs corresponding
to each. During decoding, appropriate model is determined
and used for the test speaker.

It is possible to generate different LDA matrices based
on different clusters (or superclusters) as well. This is rea-
sonable since the acoustic characteristics of male and female
speech vary widely.

We performedWPS-LDA separately on male and female
clusters. This approach yielded more reduction in the word
error rate as shown in the next section.

5. IMPLEMENTATION AND RESULTS

We implemented LDA and WPS-LDA on around 300K sen-
tences of training data composed of read continuous speech,
spelling, isolated speech and spontaneous speech recorded
using headset microphone for dictation. 9 frames of Mel-
cepstra were concatenated to form the initial feature vec-
tor and LDA is performed on this data to reduce the fea-
ture dimension to 40. HMM models were trained with 3547
context dependent phone states and a total of 42672 Gaus-
sian mixture components representing state output distri-
butions.

The baseline LDA system and the new method WPS-
LDA were evaluated using various testsets containing con-
tinuous read speech by native and non-native speakers, spon-
taneous speech, spelling and teen speech data. The word



error rate results are shown in Tables 1 and 2. Here the
columns represent different LDA and systems used. LDA
is the baseline LDA system with no speaker clustering.
WLDA(1) is the WPS-LDA system with the reciprocal of
the square of the Euclidean distances used as the weights
(i.e. f(t) = 1/t2). For WLDA(2), a different weight func-
tion f(t) = 1/t4 is used. LDA-C4 is a 4-cluster system
used with one LDA matrix. Four clusters correspond to
male, female, teen male and teen female clusters. Four dif-
ferent sets of HMMs are trained, one for each cluster, but
one LDA matrix is used. WLDA-C4 is same as LDA-C4
but WPS-LDA with f(t) = 1/t2 and again Euclidean dis-
tance measure is used. And finally WLDA2-C4 represents
a system with two WPS-LDA transformations and 4 HMM
clusters. In this case, two different WPS-LDA matrices are
found for male and female speakers separately.

It can be seen that both speaker clustering and WPS-
LDA reduces the WER. The gains in doing WPS-LDA is
more for the clustered system than the speaker independent
system, probably due to less variation in acoustic features
corresponding to same HMM states due to less speaker vari-
ation which enables better separation of acoustic classes.

Testset LDA WLDA(1) WLDA(2) #words
BOS 11.55 10.60 10.98 11180
NRR 14.83 14.39 14.26 9060
EBOS 9.59 9.58 9.41 11167
ENRR 11.45 11.10 11.12 18093
KID 23.50 22.71 23.00 23457
SPO 25.48 25.50 25.42 28846

AVERAGE 18.31 17.93 17.98 101803

Table 1: Comparison of word error rates for various test-
sets for speaker independent systems. BOS, NRR, EBOS,
ENRR are native speaker read speech testsets, KID is
teenager read speech, SPO is spontaneous speech testsets.

Testset LDA-C4 WLDA-C4 WLDA2-C4 #words

BOS 10.82 9.96 10.08 11180
NRR 13.19 13.25 12.31 9060
EBOS 9.48 9.18 8.77 11167
ENRR 10.67 10.30 9.79 18093
KID 20.26 18.86 18.51 23457
SPO 23.02 22.26 21.17 28846
AVE1 16.49 15.76 15.17 101803

LMNEW 14.59 14.03 13.69 21155
NBOS 25.90 23.74 23.77 16489
SPELL 4.11 3.61 3.31 6076
AVE2 16.76 15.89 15.43 145523

Table 2: Comparison of word error rates for various testsets
for speaker clustered systems . In addition to the testsets
in Table 1, we used LMNEW (native speaker read speech),
NBOS (nonnative read speech) and SPELL (spelling) test-
sets. AVE1 error rate is over the testsets same as in Table
1. AVE2 error rate is average error rate over all testsets.

We also tried using KL distance based weights. The
class distributions were assumed to be diagonal covariance
Gaussians and KL distance between them was used in the
weights. f(t) = 1/t2 as before. The results for female
speaker cluster is shown in Table 3. KL distance did not
result in better performance than the Euclidean distance.

Testset female WLDA WLDA-KL #words
BOS 11.22 11.63 6704
NRR 16.36 15.98 3624
EBOS 6.03 6.17 5571
ENRR 8.23 8.40 9038
KID 17.21 17.47 12287
SPO 23.31 25.11 15403

LMNEW 16.92 16.73 8462
NBOS 23.02 22.51 3354
SPELL 3.83 4.24 3631

AVERAGE 17.51 18.23 68074

Table 3: Comparison of word error rates for various testsets
for female cluster only using Euclidean and KL distance
measures in the weights.

6. CONCLUSION AND FUTURE WORK

We show that weighted pairwise scatters in LDA improve
WER in a large vocabulary continuous speech recognition
test. Among different weights, the normalization weight
based on Euclidean distance is simple and works best. KL
distance does not help much even though it utilizes within
class covariances. WPS-LDA transformations help reduce
the error rate for both speaker independent system and
speaker clustered system. But, it helps more in the speaker
clustered system.

It might be possible to improve the performance of WPS-
LDA by considering N-best confusability between classes
and modeling classes with a Gaussian mixture distribution
instead of single Gaussian distribution.
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