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Generative vs Discriminative Models

Generative vs Discriminative - HMM vs MEMM I

Generative models (e.g. FLD) and logistic regression are
generative-discriminative pairs

MEMM is an attempt to get a discriminative version of HMM

Depends on writing the conditional likelihood as

p(y1:T |x1:T ) =
T∏
t=1

p(yt |yt−1, xt)

This may not be a good assumption

This turns out not to be a good way to obtain a discriminative model
from HMM

Leads to a problem called “label bias”
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Generative vs Discriminative Models

Generative vs Discriminative - HMM vs MEMM II

Solution: Directly model p(y1:T |x1:T ) (conditional random fields)

without assuming probabilistic dependencies among yt , yt−1 and xt
Directly use a log-linear model

But use only local features in the log-linear model that depend on yt
and yt−1 only! (to enable dynamic programming)
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Generative vs Discriminative Models

Graphical models I

HMM graphical model:
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Generative vs Discriminative Models

Graphical models II

MEMM graphical model:
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Generative vs Discriminative Models

Graphical models III

CRF graphical model:
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Generative vs Discriminative Models

Remembering problem setup I

Given a sequence of features x1:T , find appropriate labels y1:T where
each yt ∈ Y, we can assume wlog that Y = [M], a finite set

This is a hard problem and the number of possible y1:T is too high,
namely MT and T is changeable

We may need additional assumptions on output labels yt , such as
being Markov
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Conditional random fields

Conditional Random Fields I

In CRF, we model the conditional probability of labels wrt observations as
follows:

p(y1:T |x1:T ) =
1

Z (x1:T ,w)
exp


Nf∑
j=1

wjFj(x1:T , y1:T )


Key thing is to assume that the global feature functions Fj(y1:T , x1:T )
should be able to be written as a sum of local features

Fj(x1:T , y1:T ) =
T∑
t=1

fj(yt−1, yt , x1:T , t)

This assumption is necessary to be able to use dynamic programming
algorithms in calculations

Each local feature may depend on all x1:T since they are given to us
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Conditional random fields

Conditional Random Fields II

This assumption yields a Markovian label sequence

Local feature functions can specialize in depending on any
combination of their inputs, they do not have to depend on all of
their arguments

For example, a transition feature will depend only on yt and yt−1
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Conditional random fields

Problems of interest

To be able to solve inference problems in CRFs, we need to be able to
compute the most likely label sequence:

y∗1:T = arg max
y ′1:T

p(y ′1:T |x1:T ; w)

and for the learning problem, we need to calculate the partition function

Z (x1:T ,w) =
∑
y ′1:T

exp


Nf∑
j=1

wjFj(x1:T , y
′
1:T )


Note that direct calculation of these two quantities is highly expensive due
to exponential amount of all possible y1:T that is needed to be considered
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Conditional random fields

Finding the most likely labeling - Viterbi algorithm I

It is easy to show that:

y∗1:T = arg max
y ′1:T

∑
j

wjFj(x1:T , y
′
1:T )

and after expanding the features

y∗1:T = arg max
y ′1:T

∑
j

wj

T∑
t=1

fj(y
′
t−1, y

′
t , x1:T , t)

Let gt(yt−1, yt) =
∑

j wj fj(yt−1, yt , x1:T , t) to simplify notation. Define
partial maximums:

V (y , t) = max
y ′1:t−1

(
t−1∑
τ=1

gτ (y ′τ−1, y
′
τ ) + gt(y

′
t−1, y)

)
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Conditional random fields

Finding the most likely labeling - Viterbi algorithm II

Clearly, this leads to a recursion:

V (y , t) = max
y ′

(
V (y ′, t − 1) + gt(y

′, y)
)

Similar to HMMs, we need to hold a backpointer to the maximizer
label (state) after each time step

We can view this procedure in a trellis

In the end we can trace back from V (y∗T ,T ) to obtain the most likely
label sequence y∗1:T .
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Conditional random fields

Forward-backward algorithm for CRFs I

Remember that:

Z (x1:T ,w) =
∑
y ′1:T

exp


Nf∑
j=1

wjFj(x1:T , y
′
1:T )


We need to sum over exponentially many sequence labelings which is
impractical

Similar to forward-backward algorithm in HMMs, we can perform a
dynamic programming algorithm like that to compute Z
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Conditional random fields

Forward-backward algorithm for CRFs II

We need to use the local features summed over time to do that

Z (x1:T ,w) =
∑
y ′1:T

exp


T∑
τ=1

Nf∑
j=1

wj fj(y
′
τ−1, y

′
τ , x1:T , τ)


Z (x1:T ,w) =

∑
y ′1:T

T∏
τ=1

Gτ (y ′τ−1, y
′
τ )

where we define Gt(y1, y2) = exp gt(y1, y2), and
gt(y1, y2) =

∑
j wj fj(y1, y2, x1:T , t) as defined earlier

and define partial sums up to time t

α(y , t) =
∑
y ′1:t−1

(
t−1∏
τ=1

Gτ (y ′τ−1, y
′
τ )Gt(y

′
t−1, y)

)
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Conditional random fields

Forward-backward algorithm for CRFs III

We can update α(y , t) by the following forward recursion

α(y , t) =
∑
y ′

α(y ′, t − 1)Gt(y
′, y)

Similarly we define backward partial sums

β(y , t) =
∑
y ′t+1:T

(
Gt+1(y , y ′t+1)

T∏
τ=t+1

Gτ+1(y ′τ , y
′
τ+1)

)

which can be updated with the backward recursion

β(y , t) =
∑
y ′

β(y ′, t + 1)Gt+1(y , y ′)
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Conditional random fields

Forward-backward algorithm for CRFs IV

Clearly

Z (x1:T ,w) =
∑
y ′

α(y ′,T ) =
∑
y ′

β(y ′, 1)

Note that if we use start and stop labels/states, we do not need the
sums above and we get

Z (x1:T ,w) = α(stop,T + 1) = β(start, 0)

Besides, we can calculate the following marginal posterior probabilities

p(yt |x1:T ) =
α(yt , t)β(yt , t)

Z (x1:T ,w)

p(yt−1, yt |x1:T ) =
α(yt−1, t − 1)Gt(yt−1, yt)β(yt , t)

Z (x1:T ,w)
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Training CRFs

CRF Training I

We have seen that when (x1:T , y1:T ) were given, ML training for
HMMs turned into simple counting

For CRFs, even in that scenario, training is not that simple

Consider conditional log-likelihood (CLL) for a single training
sequence

log p(y1:T |x1:T ; w) = wTF(x1:T , y1:T )− logZ (x1:T ,w)

where F denotes the vector of all Nf features

For multiple training sequences, we need to sum the individual CLL’s
up
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Training CRFs

CRF Training II

Gradient of the CLL for a single sequence is

F(x1:T , y1:T )−
∑
y ′1:T

F(x1:T , y
′
1:T )p(y ′1:T |x1:T )

F(x1:T , y1:T )− Ey ′1:T∼p(y
′
1:T |x1:T )

[
F(x1:T , y

′
1:T )

]
When we obtain the maximizing w, the gradient must be zero which
corresponds to making the training data feature values to be the
same as the expected values under the trained model

Part 3: Conditional Random Fields



Training CRFs

CRF Training III

The expectation of a feature can be computed using the forward and
backward variables as follows:

Ey ′1:T∼p(y
′
1:T |x1:T )

[
Fj(x1:T , y

′
1:T )

]
= Ey ′1:T∼p(y

′
1:T |x1:T )

[
T∑
t=1

fj(y
′
t−1, y

′
t , x1:T , t)

]

=
T∑
t=1

Ey ′t−1,y
′
t
[fj(y

′
t−1, y

′
t , x1:T , t)]

=
1

Z

T∑
t=1

∑
y1,y2

α(t − 1, y1)fj(y1, y2, x1:T , t)Gt(y1, y2)β(t, y2)

where Gt(y1, y2) = exp{
∑

j ′ wj ′fj ′(y1, y2, x1:T , t)}
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Training CRFs

CRF Training IV

The exact calculation of the expected value can be somewhat
computationally complex

It is possible to approximate the gradient calculation by

Considering only the best competitor’s feature function instead of
considering the average over all (expected value)
Performing Gibbs sampling to evaluate the expected value

Regularized empirical risk (conditional log-likelihood plus a
regularizing penalty term) is optimized in the case of CRFs as well

Dropping dependence on 1 : T , given training data (x i , y i ) for i ∈ [N]
where each (x i , y i ) is a training sequence, we get the following RER
function to minimize

N∑
i=1

(
−wTF(x i , y i ) + logZ (x i ,w)

)
+ Ω(w)
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Training CRFs

CRF Training V

and each entry of the gradient vector is

N∑
i=1

−Fj(x i , y i ) +
∑
y ′

p(y ′|x i ; w)Fj(x
i , y ′)

+
∂Ω

∂wj
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Training CRFs

Optimization methods

Almost all methods require computation of the gradient whose exact
computation requires forward-backward iterations, but this can be
approximated through methods discussed above

1 Iterative scaling (old one, slow)
2 Conjugate gradient method
3 L-BFGS (a Quasi Newton method)
4 Stochastic gradient method: update parameters by moving in the

direction of the gradient of one sequence at a time (easy and fast
converging)
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Training CRFs

Stochastic Gradient Updates

Stochastic gradient update for a single weight wj is as follows:

wj := wj + k

Fj(x
i , y i )−

∑
y ′

p(y ′|x i ,w)Fj(x
i , y ′)− ∂Ω

∂wj


where k is a variable learning rate parameter (step size in the gradient
direction)

Usually k is chosen to decrease inversely proportional to the iteration
number
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Training CRFs

For more information

I have used the following papers/documents for this talk, it is
beneficial to explore them all

Papers and technical reports [Lafferty et al., 2001, Sutton and
McCallum, 2006, Elkan, 2008, Gupta, 2005, Memisevic, 2006]

See video lecture by Prof. Charles Elkan on videolectures.net
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Training CRFs

Max-margin training of CRFs I

Also known as Structural SVM or max-margin Markov networks

First proposed in [Altun et al., 2003, Taskar et al., 2003]

We can formulate max-margin problems for estimating feature
weights w

Problems can be formulated using the RER framework

Enables using label-losses in margin rescaling or slack rescaling form

[Tsochantaridis et al., 2005] proposes a cutting plane algorithm to
solve the max-margin problem

Avoids forward backward
Only Viterbi algorithm needed to find the most offending label sequence
Multiple SVM problems need to be solved each time adding a new
constraint
A recent single-slack formulation [Joachims et al., 2009] is even faster
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Training CRFs

Max-margin training of CRFs II

[Taskar et al., 2003] proposes elegant reformulation of the problem as
small linear programming problems, but may not scale too well to
larger number of examples

SVM-softmax approximation in the max-margin problem would give
similar form as CRF training (and would require to compute the
marginal probabilities) but enables using label-loss functions which
was not possible in CRFs

Need more detailed discussion

Part 3: Conditional Random Fields



Training CRFs

Toolkits

Hidden markov models

HTK by Cambridge (Young et.al.)
Sphinx, Julius
Matlab statistics toolbox implements discrete HMMs

Condition random fields

CRF++ (for NL problems)
CRFSGD
Mallet

Max-margin structured learning

Svm-struct (includes SVM for sequence labeling) by Joachims
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Training CRFs

THANK YOU!

Questions?
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Training CRFs

THANK YOU!
Questions?
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Training CRFs
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Training CRFs
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