Structured learning for sequence labeling Part 2: Sequence Labeling and Hidden Markov Models

Hakan Erdogan
Sabanci University

August 2-5, 2010
Enterface'10 workshop, Amsterdam

Outline

(1) Sequence Labeling

(2) Hidden Markov Models

Part 2: Sequence Labeling and Hidden Markov Models

Sequence labeling problem definition I

- Given a sequence of features $\mathbf{x}_{1: T}$, find appropriate labels $y_{1: T}$ where each $y_{t} \in \mathcal{Y}$, we can assume wlog that $\mathcal{Y}=[M]$, a finite set
- This is a hard problem and the number of possible $y_{1: T}$ is too high, namely M^{T} and T is changeable
- We need additional assumptions on output labels y_{t}, such as being Markov
- Supervised learning problem: given training data sequences $\left\{\left(x_{1: T}^{(i)}, y_{1: T}^{(i)}\right): i=1, \ldots, N\right\}$, find a model that will predict $y_{1: T}$ given testing data $x_{1: T}$
- Note that, training and test sequences can be of different length T, but we do not explicitly indicate it to avoid clutter in our representation

Sequence labeling problem definition II

- Partially supervised learning: We do not know the label sequence $y_{1: T}^{(i)}$, but we know a sequence-specific grammar that the label sequence should obey (common case in speech recognition)

Sequence labeling applications

- Speech recognition
- Part-of-speech tagging
- Shallow parsing
- Handwriting recognition
- Protein secondary structure prediction
- Video analysis
- Facial expression dynamic modeling

Urns and balls example

- Assume there are two urns with black and white balls [Rabiner, 1989]
- One urn has more black than white (90% vs 10%) and vice versa
- Someone pulls out one ball at a time and shows us without revealing which urn he uses and puts it back into the urn
- He is more likely to use the same urn (90% chance) once he starts using one
- We are looking only at the sequence of balls and recording them

Questions about the urns and balls example

- Questions of interest:
(1) Can we predict which urn is used at a given time?
(2) What is the probability of observing the sequence of balls shown to us?
(3) Can we estimate/learn the ratio of balls in each urn by looking at a long sequence of balls if we did not know the ratios beforehand?

Jason Eisner's ice-cream example

- Example excel sheet online (illustrates forward backward algorithm)
- Example also adopted in [Jurafsky and Martin, 2008]
- Try to guess whether the weather was hot or cold by observing only how many ice-creams ($0,1,2$ or $3+$) Jason ate each day in a sequence of 30 days
- Two states and observations with 4 distinct values (discrete observations)
- Question: Can we determine if a day was hot or cold given the sequence of ice-creams consumed by Jason?

Human activity labeling in an exercise video

- Assume we are given an exercise video of a single person and we are interested in labeling actions of the person as either "standing", "squatting" or "lying down" (assume for now that no other action is present)
- We track the subject and have a bounding box around her/him at each frame of the video
- We consider as features $\mathbf{x}_{t}=\left[h_{t}, w_{t}\right]^{T}$ where h_{t} is the height of the bounding box and w_{t} is the width of the bounding box
- So, we have continuous (real) observations and three labels
- Question: Given the height and width of the bounding boxes in all frames, can we determine the action type in each frame?

Independent solution

- Simplest solution is to assume independence of sequence labels
- Find y_{t} such that $p\left(y_{t} \mid \mathbf{x}_{t}\right)$ is maximized independently
- This is suboptimal since it does not use the relation between neighboring labels
- This approach is prone to errors due to independence assumption not being valid most of the time
- One should consider the relation among neighboring labels
- A natural assumption is Markov assumption on labels which leads to hidden Markov models

Outline

(1) Sequence Labeling

(2) Hidden Markov Models

What is a hidden Markov model?

- A tool that helps us solve sequence labeling problems
- Observations $\mathbf{x}_{1: T}$ are modeled by a state machine (that is hidden) that generates them (generative model)
- States y_{t} correspond to labels, state sequence is $y_{1: T}$
- A finite set of labels is possible, $y_{t} \in \mathcal{Y}$ where $|\mathcal{Y}|$ is finite
- Markov assumption $p\left(y_{t} \mid y_{t-1}, y_{t-2}, \ldots, y_{1}\right)=p\left(y_{t} \mid y_{t-1}\right)$
- Transition from one state $\left(y_{t-1}\right)$ to another $\left(y_{t}\right)$ occurs at each time instant
- Meanwhile an observation $\left(\mathbf{x}_{t}\right)$ is emitted after the transition
- Parameters of the model:
- Probabilities of transitions among states
- Probabilities of emission of observations from states
- Probabilities of starting at states

Three views of HMMs

An HMM can be viewed in three different ways

- State transition diagram
- Graphical model
- Trellis / lattice diagram

State transition diagram - fully connected

Time is not explicitly shown in this diagram, at each time instant a transition followed by an emission occurs All transitions are possible with a certain probability in this example

State transition diagram - left-to-right

Some transitions are not possible (their probabilities are set to zero)

Graphical model

Trellis / lattice

Observations are not shown, the labels (states) are explicitly shown Graphical model is expanded at each time instant to reveal all possible states

A possible alignment

HMM state
sequence

Observed sequence of feature vectors

Depicting a possibility of alignment of observed data to an underlying left-to-right HMM

Variables

- Observations $\mathbf{x}_{1: T}$
- $\mathbf{x}_{t} \in \mathbb{R}^{d}$ for continuous observations HMM
- $\mathbf{x}_{t} \in\left[N_{o}\right]$ for discrete observations HMM
- $y_{1: T}$ state sequence, $y_{t} \in[M]$ is the state at time t
- $\lambda=(\mathbf{A}, \mathbf{B}, \pi)$: model parameters
- A where $A_{i j}=p\left(y_{t+1}=j \mid y_{t}=i\right)$ is the transition matrix
- For discrete observations \mathbf{B} is a matrix where $B_{i k}=p\left(x_{t}=k \mid y_{t}=i\right)$ are emission probabilities
- For continuous observations with Gaussian emission distributions we have $p\left(\mathbf{x}_{t} \mid y_{t}=i\right)=\mathcal{N}\left(\mathbf{x}_{t} ; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)$, we may think of \mathbf{B} as the set of mean and (co)variance parameters $\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)_{i=1}^{M}$
- π where $\pi_{i}=p\left(y_{1}=i\right)$ initial state probabilities, we can remove π if we introduce a "start" state which has initial probability of one

Rabiner's three problems of HMMs

- Problem 1: Probability/likelihood calculation: Given an observation sequence, how can I calculate the probability of observing it given an underlying HMM model $p\left(\mathbf{x}_{1: T} \mid \lambda\right)$
- Problem 2: Alignment/decoding/inference: What is the most likely state sequence given an observation sequence and an HMM model? $y_{1: T}^{*}=\arg \max _{y_{1: T}} p\left(y_{1: T} \mid x_{1: T}, \lambda\right)$
- We may also be interested in $y_{t}^{*}=\arg \max _{y_{t}} p\left(y_{t} \mid x_{1: T}, \lambda\right)$
- Problem 3: Training/learning: How can I train the parameters of an HMM given training data $\mathbf{x}_{1: T}^{(i)}$? How to choose λ to maximize $\prod_{i} p\left(\mathbf{x}_{1: T}^{(i)} \mid \lambda\right) ?$
- Note that, if we are given $\left(\mathbf{x}_{1: T}^{(i)}, y_{1: T}^{(i)}\right)$ (aka fully supervised training), maximum-likelihood training becomes just a counting process

Problem 1: Computing $P\left(\mathbf{x}_{1: T} \mid \lambda\right)$

$$
\begin{aligned}
p\left(\mathbf{x}_{1: T} \mid \lambda\right) & =\sum_{y_{1: T}} p\left(\mathbf{x}_{1: T}, y_{1: T} \mid \lambda\right) \\
& =\sum_{y_{1: T}} p\left(\mathbf{x}_{1: T} \mid y_{1: T}, \lambda\right) p\left(y_{1: T} \mid \lambda\right)
\end{aligned}
$$

where $p\left(\mathbf{x}_{1: T} \mid y_{1: T}, \lambda\right)=\prod_{t} p\left(\mathbf{x}_{t} \mid y_{t}, \lambda\right)$ is the multiplication of emission probabilities and $p\left(y_{1: T} \mid \lambda\right)=\prod_{t} p\left(y_{t} \mid y_{t-1}, \lambda\right)$ is the multiplication of transition probabilities

- Hard to enumerate all state sequences $y_{1: T}$
- Almost impossible to find the result using this way
- Instead, we use an iterative method (dynamic programming) called the forward algorithm

Forward algorithm

- Define partial probabilities $\alpha_{t}(j)=p\left(\mathbf{x}_{1: t}, y_{t}=j \mid \lambda\right)$, note that $\sum_{j} \alpha_{T}(j)$ is the desired probability of observation $p\left(\mathbf{x}_{1: T} \mid \lambda\right)$
- Iteratively update α 's in time $\alpha_{t}(j)=\sum_{i=1}^{M} \alpha_{t-1}(i) a_{i j} p\left(\mathbf{x}_{t} \mid j\right)$
- We can visualize this on a trellis

The algorithm
(1) Initialize $\alpha_{1}(j)=\pi_{j} p\left(\mathbf{x}_{1} \mid j\right)$ for $j=1, \ldots, M$
(2) Update $\alpha_{t}(j)=\sum_{i=1}^{M} \alpha_{t-1}(i) a_{i j} p\left(\mathbf{x}_{t} \mid j\right)$ for $j=1, \ldots, M$
(3) Terminate: $p\left(\mathbf{x}_{1: T} \mid \lambda\right)=\sum_{j=1}^{M} \alpha_{T}(j)$

Forward algorithm on a trellis

$$
\begin{aligned}
& \mathrm{y}=1 \\
& \alpha_{t}(j)=\sum_{i=1}^{M} \alpha_{t-1}(i) a_{i j} p\left(x_{t} \mid j\right) \\
& \alpha_{2}(1)=\left[\alpha_{1}(1) a_{11}+\alpha_{1}(2) a_{21}+\alpha_{1}(2) a_{31}\right] p\left(x_{2} \mid 1\right)
\end{aligned}
$$

Problem 2: Alignment/decoding/inference

- We would like to find optimal $y_{1: T}^{*}=\arg \max _{y_{1: T}} p\left(y_{1: T} \mid x_{1: T}, \lambda\right)$
- Use another dynamic programming algorithm called Viterbi algorithm
- Simply replace the sum in the forward algorithm with a max operation
- Also, hold a backpointer at each state to remember the maximum scoring path

Viterbi algorithm

- Define partial maximal probabilities

$$
V_{t}(j)=\max _{y_{1: t-1}} p\left(\mathbf{x}_{1: t}, y_{1: t-1}, y_{t}=j \mid \lambda\right)
$$

- Iteratively update V 's in time $V_{t}(j)=\max _{i=1}^{M} V_{t-1}(i) a_{i j} p\left(\mathbf{x}_{t} \mid j\right)$
- We can visualize this on a trellis (same picture as forward algorithm, replace sum with max)

The algorithm
(1) Initialize $V_{1}(j)=\pi_{j} p\left(\mathbf{x}_{1} \mid j\right)$
(2) Update

- $V_{t}(j)=\max _{i=1}^{M} V_{t-1}(i) a_{i j} p\left(\mathbf{x}_{t} \mid j\right)$
- Hold a backpointer $\psi_{t}(j)=\arg \max _{i} V_{t-1}(i) a_{i j} p\left(\mathbf{x}_{t} \mid j\right)$
(3) Terminate
- Perform the update at step T
- Trace back the path from $\psi_{T}\left(y_{T}^{*}\right)$ where y_{T}^{*} is the maximum likely end state

Problem 3: Training I

- Given $\left(\mathbf{x}_{1: T_{i}}^{(i)}\right)_{i=1}^{N}$, maximum likelihood training requires finding

$$
\hat{\lambda}=\arg \max _{\lambda} \sum_{i=1}^{N} \log \left(p\left(\mathbf{x}_{1: T_{i}}^{(i)} \mid \lambda\right)\right)
$$

- For simplicity, assume single sequence $\mathbf{x}_{1: T}$ for training, generalization to multiple sequences is trivial
- Direct maximization is not easy, use Expectation Maximization (EM) algorithm
- Latent data is the label sequence $\left(y_{1: T}\right)$
(1) Start with an initial $\lambda^{\text {old }}$
(2) Expectation step (E-step): Compute posterior probability of the latent variables $p\left(y_{1: T} \mid \mathbf{x}_{1: T}, \lambda^{\text {old }}\right)$

Problem 3: Training II

(3) Maximization step (M-step): Find λ that maximizes the auxiliary function which is the expected log-likelihood of the complete data under the posterior found in the E-step

$$
Q\left(\lambda, \lambda^{\text {old }}\right)=\sum_{y_{1: T}^{\prime}} p\left(y_{1: T}^{\prime} \mid \mathbf{x}_{1: T}, \lambda^{\text {old }}\right) \log p\left(\mathbf{x}_{1: T}, y_{1: T}^{\prime} \mid \lambda\right)
$$

- Initialization is very important and it can be more art than science
- In case of HMMs, EM algorithm is called the forward-backward algorithm
- Need to propagate forward and backward variables for the E-step

Backward Algorithm

Similar to forward algorithm, we need a backward algorithm where we define

$$
\beta_{t}(i)=p\left(x_{t+1: T} \mid y_{t}=i, \lambda\right)
$$

The update is from final time to the beginning time and the update rule becomes (follows from probabilities and graphical model of HMMs)

$$
\beta_{t}(i)=\sum_{j=1}^{M} a_{i j} p\left(x_{t+1} \mid j\right) \beta_{t+1}(j), \quad \forall i=1, \ldots, M
$$

We can visualize this on a trellis

Backward algorithm on a trellis

$$
\begin{aligned}
& \mathrm{t}=1 \\
& \beta_{t}(i)=\sum_{j=1}^{M} \beta_{t+1}(j) a_{i j} p\left(x_{t+1} \mid j\right) \\
& \beta_{2}(2)=\beta_{3}(1) a_{21} p\left(x_{3} \mid 1\right)+\beta_{3}(2) a_{22} p\left(x_{3} \mid 2\right)+\beta_{3}(3) a_{23} p\left(x_{3} \mid 3\right)
\end{aligned}
$$

Posterior probabilities I

- For the EM algorithm, we need to sum over exponentially many $\sum_{y_{1: T}^{\prime}} p\left(y_{1: T}^{\prime} \mid \mathbf{x}_{1: T}, \lambda^{\text {old }}\right) \log p\left(\mathbf{x}_{1: T}, y_{1: T}^{\prime} \mid \lambda\right)$, but both terms in the sum can be factorized due to the graphical model of the HMM
- Using the forward-backward algorithm we obtain local posteriors:

$$
\xi_{t}(i, j)=p\left(y_{t-1}=i, y_{t}=j \mid \mathbf{x}_{1: T}, \lambda^{o l d}\right)
$$

and

$$
\gamma_{t}(j)=p\left(y_{t}=j \mid \mathbf{x}_{1: T}, \lambda^{\text {old }}\right)
$$

then it is easy to maximize the auxiliary function $Q\left(\lambda, \lambda^{o l d}\right)$ which factorizes as follows [Bishop, 2006]

$$
\sum_{j=1}^{M} \gamma_{1}(j) \log \pi_{j}+\sum_{t=2}^{T} \sum_{i, j=1}^{M} \xi_{t}(i, j) \log a_{i j}+\sum_{t=1}^{T} \sum_{j=1}^{M} \gamma_{t}(j) \log p\left(\mathbf{x}_{t} \mid j\right)
$$

Posterior probabilities II

- Once we can obtain the posterior probabilities using previous iteration's parameters ($\lambda^{\text {old }}$), we can update the emission parameters using $\gamma_{t}(j)$ and transition parameters using $\xi_{t}(i, j)$
- We can obtain these two sets of variables using forward-backward probabilities
- After performing one forward and one backward pass, we have all α and β parameters

Then,

$$
\gamma_{t}(j)=\frac{\alpha_{t}(j) \beta_{t}(j)}{p\left(x_{1: T} \mid \lambda\right)}
$$

and

$$
\xi_{t}(i, j)=\frac{\alpha_{t-1}(i) a_{i j} p\left(x_{t} \mid j\right) \beta_{t}(j)}{p\left(x_{1: T} \mid \lambda\right)}
$$

Updating the parameters I

- Assume there is only a single training sequence ($x_{1: T}$)
- After $\gamma_{t}(j)$ and $\xi_{t}(i, j)$ parameters are found, the parameter estimation becomes like a weighted counting procedure
- For transition parameters $\hat{a}_{i j}=\frac{\sum_{t=2}^{T} \xi_{t}(i, j)}{\sum_{t=2}^{T} \sum_{j=1}^{M} \xi_{t}(i, j)}$
- For emission parameters:
- Discrete case: $p(x \mid j):=\frac{\sum_{t=1}^{T} \gamma_{t}(j) \delta_{x_{t}, x}}{\sum_{t=1}^{T} \gamma_{t}(j)}$

Updating the parameters II

- Gaussian case: The means and variances are updated using weighted sample averages where weights are $\gamma_{t}(j)$ for each state j
- So, when there is one training sequence, mean update is as follows

$$
\hat{\boldsymbol{\mu}}_{j}=\frac{\sum_{t=1}^{T} \gamma_{t}(j) \mathbf{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(j)}
$$

- And the covariance update is similarly

$$
\hat{\boldsymbol{\Sigma}}_{j}=\frac{\sum_{t=1}^{T} \gamma_{t}(j) \mathbf{x}_{\mathrm{t}} \mathbf{x}_{t}^{T}}{\sum_{t=1}^{T} \gamma_{t}(j)}-\hat{\boldsymbol{\mu}}_{j} \hat{\boldsymbol{\mu}}_{j}^{T}
$$

Gaussian mixture observations I

- Gaussian mixture model (GMM) distributions are used a lot in HMMs (e.g. for speech recognition)
- The emission probabilities are represented as a GMM

- $p(\mathbf{x} \mid y)=\sum_{m} p(\mathbf{x} \mid m, y) p(m \mid y)=\sum_{m} \mathcal{N}\left(\mathbf{x} ; \mu_{y, m}, \Sigma_{y, m}\right) c_{y, m}$

Gaussian mixture observations II

- The emission parameter updates will depend on mixture posteriors

$$
\begin{aligned}
\gamma_{t}(j, m) & =p\left(y_{t}=j, m_{t}=m \mid \mathbf{x}_{1: T}\right) \\
& =p\left(y_{t}=j \mid \mathbf{x}_{1: T}\right) p\left(m_{t}=m \mid y_{t}=j, \mathbf{x}_{1: T}\right) \\
& =\gamma_{t}(j) \frac{c_{j, m} p\left(\mathbf{x}_{t} \mid j, m\right)}{\sum_{m^{\prime}} c_{j, m^{\prime}} p\left(\mathbf{x}_{t} \mid j, m^{\prime}\right)}
\end{aligned}
$$

- Then, when there is a single sequence for training, mean updates will be as follows:

$$
\hat{\boldsymbol{\mu}}_{j, m}=\frac{\sum_{t=1}^{T} \gamma_{t}(j, m) \mathbf{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(j, m)}
$$

- (co)variances can be updated in a similar fashion

Other related models

- Hidden Semi-Markov models: assigns a single label to a segment instead of labeling each observation separately, enables explicit duration model
- Factorial HMM: multiple states explain the observation at the same time
- Multi-stream HMM: the observations are handled in separate streams each of which are independently modeled by a different emission model
- Coupled HMM: two state sequences generate two streams, they interact through their states

References I

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Daniel Jurafsky and James H Martin. Speech and language processing (second edition). Prentice Hall, New Jersey, 2008.

Lawrence R Rabiner. A tutorial on hidden Markov models and selected application in speech recognition. Proc. IEEE, 77(2):257-285, February 1989.

