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Sequence Labeling

Sequence labeling problem definition I

Given a sequence of features x1:T , find appropriate labels y1:T where
each yt ∈ Y, we can assume wlog that Y = [M], a finite set

This is a hard problem and the number of possible y1:T is too high,
namely MT and T is changeable

We need additional assumptions on output labels yt , such as being
Markov

Supervised learning problem: given training data sequences{
(x

(i)
1:T , y

(i)
1:T ) : i = 1, . . . ,N

}
, find a model that will predict y1:T

given testing data x1:T

Note that, training and test sequences can be of different length T ,
but we do not explicitly indicate it to avoid clutter in our
representation
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Sequence labeling problem definition II

Partially supervised learning: We do not know the label sequence

y
(i)
1:T , but we know a sequence-specific grammar that the label

sequence should obey (common case in speech recognition)

t=1

Label 5 Label 2

yt =  5   5    5    5   5    2   2    2   2  …  
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Sequence labeling applications

Speech recognition

Part-of-speech tagging

Shallow parsing

Handwriting recognition

Protein secondary structure prediction

Video analysis

Facial expression dynamic modeling
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Urns and balls example

Assume there are two urns with black and white balls [Rabiner, 1989]

One urn has more black than white (90% vs 10%) and vice versa

Someone pulls out one ball at a time and shows us without revealing
which urn he uses and puts it back into the urn

He is more likely to use the same urn (90% chance) once he starts
using one

We are looking only at the sequence of balls and recording them
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Questions about the urns and balls example

Questions of interest:
1 Can we predict which urn is used at a given time?
2 What is the probability of observing the sequence of balls shown to us?
3 Can we estimate/learn the ratio of balls in each urn by looking at a

long sequence of balls if we did not know the ratios beforehand?
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Jason Eisner’s ice-cream example

Example excel sheet online (illustrates forward backward algorithm)

Example also adopted in [Jurafsky and Martin, 2008]

Try to guess whether the weather was hot or cold by observing only
how many ice-creams (0, 1, 2 or 3+) Jason ate each day in a
sequence of 30 days

Two states and observations with 4 distinct values (discrete
observations)

Question: Can we determine if a day was hot or cold given the
sequence of ice-creams consumed by Jason?
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Human activity labeling in an exercise video

Assume we are given an exercise video of a single person and we are
interested in labeling actions of the person as either “standing”,
“squatting” or “lying down” (assume for now that no other action is
present)

We track the subject and have a bounding box around her/him at
each frame of the video

We consider as features xt = [ht ,wt ]
T where ht is the height of the

bounding box and wt is the width of the bounding box

So, we have continuous (real) observations and three labels

Question: Given the height and width of the bounding boxes in all
frames, can we determine the action type in each frame?
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Independent solution

Simplest solution is to assume independence of sequence labels

Find yt such that p(yt |xt) is maximized independently

This is suboptimal since it does not use the relation between
neighboring labels

This approach is prone to errors due to independence assumption not
being valid most of the time

One should consider the relation among neighboring labels

A natural assumption is Markov assumption on labels which leads to
hidden Markov models
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What is a hidden Markov model? I

A tool that helps us solve sequence labeling problems

Observations x1:T are modeled by a state machine (that is hidden)
that generates them (generative model)

States yt correspond to labels, state sequence is y1:T

A finite set of labels is possible, yt ∈ Y where |Y| is finite

Markov assumption p(yt |yt−1, yt−2, . . . , y1) = p(yt |yt−1)

Transition from one state (yt−1) to another (yt) occurs at each time
instant

Meanwhile an observation (xt) is emitted after the transition

Parameters of the model:

Probabilities of transitions among states
Probabilities of emission of observations from states
Probabilities of starting at states
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Three views of HMMs

An HMM can be viewed in three different ways

State transition diagram

Graphical model

Trellis / lattice diagram
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State transition diagram - fully connected

1

3

2

start

3

Time is not explicitly shown in this diagram, at each time instant a
transition followed by an emission occurs
All transitions are possible with a certain probability in this example
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State transition diagram - left-to-right

1 32start stop1 32start stop

Some transitions are not possible (their probabilities are set to zero)

Part 2: Sequence Labeling and Hidden Markov Models



Hidden Markov Models

Graphical model

y1

x1

y2

x2

yT

xT

y3

x3
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Trellis / lattice

y=1

y=2

y=3

t=1 t=2 t=4t=3 t=T

y=3

Observations are not shown, the labels (states) are explicitly shown
Graphical model is expanded at each time instant to reveal all possible
states

Part 2: Sequence Labeling and Hidden Markov Models



Hidden Markov Models

A possible alignment

HMM state 

sequence

Observed 

sequence 

of feature 

vectors

t=0 t=T

Depicting a possibility of alignment of observed data to an underlying
left-to-right HMM
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Variables

Observations x1:T
xt ∈ IRd for continuous observations HMM
xt ∈ [No ] for discrete observations HMM

y1:T state sequence, yt ∈ [M] is the state at time t

λ = (A,B, π): model parameters

A where Aij = p(yt+1 = j |yt = i) is the transition matrix
For discrete observations B is a matrix where Bik = p(xt = k|yt = i)
are emission probabilities
For continuous observations with Gaussian emission distributions we
have p(xt |yt = i) = N (xt ;µi ,Σi ), we may think of B as the set of
mean and (co)variance parameters (µi ,Σi )

M
i=1

π where πi = p(y1 = i) initial state probabilities, we can remove π if
we introduce a “start” state which has initial probability of one
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Rabiner’s three problems of HMMs

Problem 1: Probability/likelihood calculation: Given an observation
sequence, how can I calculate the probability of observing it given an
underlying HMM model p(x1:T |λ)

Problem 2: Alignment/decoding/inference: What is the most likely
state sequence given an observation sequence and an HMM model?
y∗1:T = arg maxy1:T p(y1:T |x1:T , λ)

We may also be interested in y∗t = arg maxyt p(yt |x1:T , λ)

Problem 3: Training/learning: How can I train the parameters of an

HMM given training data x
(i)
1:T ? How to choose λ to maximize∏

i p(x
(i)
1:T |λ) ?

Note that, if we are given (x
(i)
1:T , y

(i)
1:T ) (aka fully supervised training),

maximum-likelihood training becomes just a counting process
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Problem 1: Computing P(x1:T |λ)

p(x1:T |λ) =
∑
y1:T

p(x1:T , y1:T |λ)

=
∑
y1:T

p(x1:T |y1:T , λ)p(y1:T |λ)

where p(x1:T |y1:T , λ) =
∏

t p(xt |yt , λ) is the multiplication of emission
probabilities and p(y1:T |λ) =

∏
t p(yt |yt−1, λ) is the multiplication of

transition probabilities

Hard to enumerate all state sequences y1:T

Almost impossible to find the result using this way

Instead, we use an iterative method (dynamic programming) called
the forward algorithm
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Forward algorithm

Define partial probabilities αt(j) = p(x1:t , yt = j |λ), note that∑
j αT (j) is the desired probability of observation p(x1:T |λ)

Iteratively update α’s in time αt(j) =
∑M

i=1 αt−1(i)aijp(xt |j)
We can visualize this on a trellis

The algorithm

1 Initialize α1(j) = πjp(x1|j) for j = 1, . . . ,M

2 Update αt(j) =
∑M

i=1 αt−1(i)aijp(xt |j) for j = 1, . . . ,M

3 Terminate: p(x1:T |λ) =
∑M

j=1 αT (j)

Part 2: Sequence Labeling and Hidden Markov Models



Hidden Markov Models

Forward algorithm on a trellis

y=1

y=2

y=3
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Problem 2: Alignment/decoding/inference

We would like to find optimal y∗1:T = arg maxy1:T p(y1:T |x1:T , λ)

Use another dynamic programming algorithm called Viterbi algorithm

Simply replace the sum in the forward algorithm with a max operation

Also, hold a backpointer at each state to remember the maximum
scoring path
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Viterbi algorithm

Define partial maximal probabilities
Vt(j) = maxy1:t−1 p(x1:t , y1:t−1, yt = j |λ)

Iteratively update V ’s in time Vt(j) = maxMi=1 Vt−1(i)aijp(xt |j)
We can visualize this on a trellis (same picture as forward algorithm,
replace sum with max)

The algorithm

1 Initialize V1(j) = πjp(x1|j)
2 Update

Vt(j) = maxMi=1 Vt−1(i)aijp(xt |j)
Hold a backpointer ψt(j) = arg maxi Vt−1(i)aijp(xt |j)

3 Terminate

Perform the update at step T
Trace back the path from ψT (y∗T ) where y∗T is the maximum likely end
state
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Problem 3: Training I

Given (x
(i)
1:Ti

)Ni=1, maximum likelihood training requires finding

λ̂ = arg max
λ

N∑
i=1

log
(
p(x

(i)
1:Ti
|λ)
)

For simplicity, assume single sequence x1:T for training, generalization
to multiple sequences is trivial

Direct maximization is not easy, use Expectation Maximization (EM)
algorithm

Latent data is the label sequence (y1:T )
1 Start with an initial λold

2 Expectation step (E-step): Compute posterior probability of the latent
variables p(y1:T |x1:T , λold)
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Problem 3: Training II

3 Maximization step (M-step): Find λ that maximizes the auxiliary
function which is the expected log-likelihood of the complete data
under the posterior found in the E-step

Q(λ, λold) =
∑
y ′
1:T

p(y ′1:T |x1:T , λold) log p(x1:T , y
′
1:T |λ)

Initialization is very important and it can be more art than science

In case of HMMs, EM algorithm is called the forward-backward
algorithm

Need to propagate forward and backward variables for the E-step
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Backward Algorithm

Similar to forward algorithm, we need a backward algorithm where we
define

βt(i) = p(xt+1:T |yt = i , λ)

The update is from final time to the beginning time and the update rule
becomes (follows from probabilities and graphical model of HMMs)

βt(i) =
M∑
j=1

aijp(xt+1|j)βt+1(j), ∀i = 1, . . . ,M

We can visualize this on a trellis
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Backward algorithm on a trellis
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Posterior probabilities I

For the EM algorithm, we need to sum over exponentially many∑
y ′1:T

p(y ′1:T |x1:T , λold) log p(x1:T , y
′
1:T |λ), but both terms in the sum

can be factorized due to the graphical model of the HMM

Using the forward-backward algorithm we obtain local posteriors:

ξt(i , j) = p(yt−1 = i , yt = j |x1:T , λold)

and
γt(j) = p(yt = j |x1:T , λold)

then it is easy to maximize the auxiliary function Q(λ, λold) which
factorizes as follows [Bishop, 2006]

M∑
j=1

γ1(j) log πj +
T∑
t=2

M∑
i ,j=1

ξt(i , j) log aij +
T∑
t=1

M∑
j=1

γt(j) log p(xt |j)
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Posterior probabilities II

Once we can obtain the posterior probabilities using previous
iteration’s parameters (λold), we can update the emission parameters
using γt(j) and transition parameters using ξt(i , j)

We can obtain these two sets of variables using forward-backward
probabilities

After performing one forward and one backward pass, we have all α
and β parameters

Then,

γt(j) =
αt(j)βt(j)

p(x1:T |λ)

and

ξt(i , j) =
αt−1(i)aijp(xt |j)βt(j)

p(x1:T |λ)
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Updating the parameters I

Assume there is only a single training sequence (x1:T )

After γt(j) and ξt(i , j) parameters are found, the parameter
estimation becomes like a weighted counting procedure

For transition parameters âij =

∑T
t=2 ξt(i , j)∑T

t=2

∑M
j=1 ξt(i , j)

For emission parameters:

Discrete case: p(x |j) :=

∑T
t=1 γt(j)δxt ,x∑T

t=1 γt(j)
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Updating the parameters II

Gaussian case: The means and variances are updated using weighted
sample averages where weights are γt(j) for each state j
So, when there is one training sequence, mean update is as follows

µ̂j =

∑T
t=1 γt(j)xt∑T
t=1 γt(j)

And the covariance update is similarly

Σ̂j =

∑T
t=1 γt(j)xtxTt∑T

t=1 γt(j)
− µ̂j µ̂

T
j

Part 2: Sequence Labeling and Hidden Markov Models



Hidden Markov Models

Gaussian mixture observations I

Gaussian mixture model (GMM) distributions are used a lot in HMMs
(e.g. for speech recognition)

The emission probabilities are represented as a GMM

m1

y1

m2

y2

m3

y3

mT

yT

x1 x2 x3 xT

p(x|y) =
∑

m p(x|m, y)p(m|y) =
∑

mN (x;µy ,m,Σy ,m)cy ,m
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Gaussian mixture observations II

The emission parameter updates will depend on mixture posteriors

γt(j ,m) = p(yt = j ,mt = m|x1:T )

= p(yt = j |x1:T )p(mt = m|yt = j , x1:T )

= γt(j)
cj ,mp(xt |j ,m)∑
m′ cj ,m′p(xt |j ,m′)

Then, when there is a single sequence for training, mean updates will
be as follows:

µ̂j ,m =

∑T
t=1 γt(j ,m)xt∑T
t=1 γt(j ,m)

(co)variances can be updated in a similar fashion
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Other related models

Hidden Semi-Markov models: assigns a single label to a segment
instead of labeling each observation separately, enables explicit
duration model

Factorial HMM: multiple states explain the observation at the same
time

Multi-stream HMM: the observations are handled in separate streams
each of which are independently modeled by a different emission
model

Coupled HMM: two state sequences generate two streams, they
interact through their states
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