
Structured learning for sequence labeling
Part 1: Linear Classifiers

Hakan Erdogan
Sabanci University

August 2-5, 2010
Enterface’10 workshop, Amsterdam

Part 1: Linear Classifiers

Binary Classifiers

Outline

1 Binary Classifiers

2 Multi-class classification

Part 1: Linear Classifiers

Binary Classifiers

Linear binary classification I

Given training data {(xi , yi) : i ∈ [N]} where xi ∈ IRd and
yi ∈ Y = {−1,+1}
[N] = {1, . . . ,N}, xi = [xi ,1, xi ,2, . . . , xi ,d]T are feature vectors, yi are
class identities

Find a weight vector w̃ ∈ IRd+1 such that for test data x, we obtain a
score w̃T x̃ = wTx + b where:

x̃ = [xT , 1]T is the augmented feature vector
w̃ = [wT , b]T is the augmented weight vector, b is called the bias term

w̃ represents a hyperplane in IRd+1, it is the normal vector to the
hyperplane {x̃ : w̃T x̃ = 0} that passes through the origin

Part 1: Linear Classifiers

Binary Classifiers

Linear binary classification II

w

x

wTx+b=0 >0

<0

-b/||w||

(wTx+b)/||w||

Part 1: Linear Classifiers

Binary Classifiers

Linear binary classification

The score can be used to classify a new sample x into one of two
classes by thresholding:

ŷ =

{
+1 if w̃T x̃ ≥ T

−1 if w̃T x̃ < T

We can obtain an ROC curve (or DET curve) by changing the
threshold T

By default, we may assume T = 0 since the bias term is included in
the model

One can also obtain posterior probabilities p(y |x) from the score w̃T x̃

The problem: how to obtain the “best” weight vector w̃?

We consider three different classifiers: Fisher’s linear discriminant,
logistic regression and support vector machines

Part 1: Linear Classifiers

Binary Classifiers

Fisher’s linear discriminant (FLD) I

Assume each class’ data are multi-variate Gaussian distributed with a
common covariance matrix (homoscedastic)

p(x|y) = N (x;µy ,Σ) where Σ is the common covariance matrix, µy
are class means

N (x;µy ,Σ) =

exp

{
−1

2
(x − µy)TΣ−1(x − µy)

}
((2π)d |Σ|)1/2

Using Bayes’ therorem, we can show that

p(y = 1|x) =
p(x|y = 1)p(y = 1)∑

y ′∈Y p(x|y ′)p(y ′)
= σ(wTx + b)

where
σ(t) = (1 + exp(−t))−1

Part 1: Linear Classifiers

Binary Classifiers

Fisher’s linear discriminant (FLD) II

is the logistic sigmoid function, and

w = Σ−1(µ1 − µ−1) (1)

b = −1

2
µT1 Σ−1µ1 +

1

2
µT−1Σ−1µ−1 + log(

p(y = 1)

p(y = −1)
)

Fisher’s linear discriminant yields a linear boundary for classification

Fisher’s linear discriminant is a generative model for x conditioned
on y

It seems a waste to find two class means (of size 2d) and a common
covariance matrix (size d(d + 1)/2) where in the end what matters for
classification is the weight vector w and the bias b (size d + 1 only)

Part 1: Linear Classifiers

Binary Classifiers

0 2 4 6

−2

0

2

4

6

8

Feature 1

F
ea

tu
re

 2

FLD

Modeling assumption valid

−2 0 2 4 6
−2

0

2

4

6

8

Feature 1
F

ea
tu

re
 2

FLD

Modeling assumption invalid

Part 1: Linear Classifiers

Binary Classifiers

Logistic regression I

Discriminative linear model as opposed to FLD which is a generative
model

Assume p(y = 1|x) = σ(w̃T x̃) where σ(.) is the logistic sigmoid
[Bishop, 2006]

Find parameters w̃ by maximizing the log-likelihood of the class
identities y , p(y |x) (instead of p(x|y) in FLD, a generative model)
using the training data

Define πi (w̃) = σ(w̃T x̃i)

ˆ̃w = arg max
w̃

∑
yi=1

log(πi (w̃)) +
∑

yi=−1

log(1− πi (w̃))

Part 1: Linear Classifiers

Binary Classifiers

Logistic regression II

Gradient of the log-likelihood wrt to the parameters is [Bishop, 2006]

∇L(w̃) =
∑
yi=1

xi (πi (w̃)− 1) +
∑

yi=−1

xiπi (w̃)

There is an iterative reweighted least squares (IRLS) algorithm to
solve for w̃ given in [Bishop, 2006]

We only estimate d + 1 parameters from data directly

There is no need to assume a distribution p(x|y) since x’s are given
to us in a training scenario

So, we only model p(y |x) which becomes “discriminative modeling”

The assumed parametric form of p(y |x) comes from the generative
FLD model though!

Question: Can I get back a discriminatively trained conditional
Gaussian distributions from logistic regression result w̃?

Part 1: Linear Classifiers

Binary Classifiers

Logistic regression III

Answer is yes, choosing µy and Σ consistent with w̃ obtained through
logistic regression using equation 2 will give discriminatively trained
parameters for Gaussians (note that they will not be ML trained
parameters)

Part 1: Linear Classifiers

Binary Classifiers

−2 0 2 4 6
−2

0

2

4

6

8

Feature 1

F
ea

tu
re

 2

FLD

FLD when assumption invalid

−2 0 2 4 6
−2

0

2

4

6

8

Feature 1
F

ea
tu

re
 2

LR

LR with the same data

Part 1: Linear Classifiers

Binary Classifiers

Support vector machines I

A discriminative classifier that tries to maximize the soft margin
between classes to increase generalizibility

min
1

2
||w||2 + C

N∑
i=1

ξi

subject to:

yi (wTxi + b) ≥ 1− ξi (2)

ξi ≥ 0 (3)

Part 1: Linear Classifiers

Binary Classifiers

Support vector machines II

The constraint optimization is simply equivalent to minimizing the
following objective function wrt w and b without constraints (called
the primal formulation)

min
1

2
||w||2 + C

N∑
i=1

(1− yi (wTx + b))+

where (x)+ = max(x , 0) and C is a fixed parameter to be determined

Part 1: Linear Classifiers

Binary Classifiers

Support vector machines III

Usually, the dual formulation is used to solve the SVM problem since
it appears to be easier, results in sparsity due to support vectors and
enables using kernel functions for nonlinear separability

max
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

subject to

N∑
i=1

αiyi = 0 (4)

0 ≥ αi ≥ C (5)

where αi are the dual variables (Lagrange multipliers for each
constraint, that is training sample). Optimal weight vector can be
found by w =

∑N
i=1 αiyixi

Part 1: Linear Classifiers

Binary Classifiers

Support vector machines IV

wTx+b=0

=1

=-1
ξ=0,α=0 (irrelevant)

ξ=0, 0<α<C (boundary SV)

ξ >0, α=C (non-boundary SV)

2/||w||

There is sparsity in αi

and most αi turn out
to be zero

The xi that
correspond to nonzero
αi are called support
vectors

If αi = C , then xi are
non-boundary support
vectors

The support vectors are the only training samples that matter in
determining the optimal weights (hence the separating hyperplane)

Part 1: Linear Classifiers

Binary Classifiers

Support vector machines V

To find optimal b, take any nonzero αi and use the equation
αi

(
yi (wTxi + b)− 1

)
= 0 (comes from KKT conditions) or average

values from all nonzero αi ’s.

Part 1: Linear Classifiers

Binary Classifiers

Regularized empirical risk (RER) minimization I

Unifying framework for different linear classifiers

Consider a predictor function fθ(x) : IRd → IRm that can be used to
predict output labels y from features x, m is the number of prediction
values (discriminants)

For the linear binary classification problem, m = 1, θ = w̃ and
fw̃(x) = w̃T x̃

Define a “loss function” L : IRm × Y → IR+ that measures the cost
of prediction

We define the expected risk as follows:

R(θ) =

∫
L (fθ(x), y) p(x, y)dxdy

Part 1: Linear Classifiers

Binary Classifiers

Regularized empirical risk (RER) minimization II

Since the joint distribution p(x, y) is usually unknown, we can find an
estimate of the risk from the training data called the “empirical risk”
which needs to be minimized wrt the parameters θ

R̂(θ) =
1

N

N∑
i=1

L (fθ(xi), yi)

Usually we add a penalty term Ω(θ) for the parameters which
penalizes complex (or large) predictor functions to arrive at what is
called the “regularized empirical risk”

R̂(θ) =
1

N

N∑
i=1

L (fθ(xi), yi) + Ω(θ)

Part 1: Linear Classifiers

Binary Classifiers

Regularized empirical risk (RER) minimization III

Note that “structured risk” minimization is similar where the
regularization function is replaced by the Vapnik-Chervonenkis (VC)
confidence of the predictor function (which is also a measure of
complexity of the predictor)

All previous methods (FLD, LR and SVM) can be seen as variants of
regularized empirical risk minimization by utilization of a different loss
function as we elaborate in the following slides

Part 1: Linear Classifiers

Binary Classifiers

Loss functions I

RER for linear binary classification is as follows:

R̂(w̃) =
1

N

N∑
i=1

L
(

w̃T x̃i , yi
)

+ Ω(w̃)

Using different loss functions yield different methods for linear binary
classification

Part 1: Linear Classifiers

Binary Classifiers

LS loss

L(w̃T x̃, y) = (w̃T x̃− ty)2

Here ty are regression targets for each class in least squares
regression. Using LS loss with no regularization is equivalent to FLD

when ty = y
N

Ny
where Ny is the number of samples in class y

[Bishop, 2006]

LS-SVM uses ty = y and a quadratic regularizer [Suykens and
Vandewalle, 1999]. Without regularization, LS-SVM is similar to FLD

Regularized LDA [Friedman, 1989] is equivalent to using a
regularization function in the RER framework

Part 1: Linear Classifiers

Binary Classifiers

BNLL loss

L(w̃T x̃, y) = log
(

1 + exp
{
−yw̃T x̃

})
Using binomial negative log-likelihood (BNLL) loss function with no
regularization is equivalent to performing a logistic regression
classification

Part 1: Linear Classifiers

Binary Classifiers

Hinge loss

L(w̃T x̃, y) = (1− yw̃T x̃)+

Using hinge loss function and a regularization function
Ω(w̃) = λw̃TDw̃ (where D is a diagonal matrix with all ones in the
diagonal except for the last entry which is zero) is equivalent to
performing an SVM classification

Note that Ω(w̃) = λw̃T w̃ is also used which is slightly different (in
liblinear [Fan et al., 2008])

Part 1: Linear Classifiers

Binary Classifiers

Other loss functions

There are many other loss functions defined in the literature [LeCun
et al., 2006]

Huber-hinge loss is one which smooths the edge of the hinge loss so
that we end up with a differentiable loss function

Squared-hinge loss is the square of the hinge loss which is also
differentiable (called L2-SVM)

Part 1: Linear Classifiers

Binary Classifiers

Loss function plots

−0.5 0 0.5 1 1.5 2

0

0.5

1

z=ywTx

lo
ss

 v
a

lu
e

,
L(

z)

Illustration of loss functions L(z)

absolute−hinge

squared−hinge

huber−hinge

logistic

ls

Part 1: Linear Classifiers

Binary Classifiers

Regularization functions I

Although originally FLD and LR do not use regularization, it was
shown to be beneficial in all cases

Typically an L2-norm regularization Ω(w̃) = λ||w̃||2 is used

λ is a hyper-parameter that needs to be determined (next slide)

Regularization helps in all classifiers arguably due to

improving test accuracy due to penalizing the complexity of the
classifier
avoiding overtraining/overfitting
avoiding numerical problems in implementation.

L1-norm is used when sparse parameter vectors are desired

For example L1-regularized L1-SVM is considered in [Mangasarian,
2006].

Part 1: Linear Classifiers

Binary Classifiers

Estimating the hyperparameters I

The hyperparameter λ can be found by grid search on validation data,
that is by evaluating the performance of the trained classifier on the
validation data

Multiple fold cross-validation on the training data can also be
performed for this purpose

Bayesian “evidence framework” can be used to find the
hyperparameters, this requires re-interpreting the empirical risk
optimization as a maximum aposteriori probability (MAP) estimation
problem [Hoffmann, 2007] - Bayesian LDA

Perturbation analysis can be used [Zheng et al., 2009]

Other ad-hoc methods exist as well

Part 1: Linear Classifiers

Binary Classifiers

RER optimization methods

LS and logistic losses are differentiable, so primal algorithms such as
Newton’s method work very well

LS loss has closed form solution

For logistic loss, Newton’s method results in iterative re-weighted
least squares (IRLS) formulation

For hinge loss, one needs to go to the dual QP problem and solve it in
the dual

For squared-hinge or huber-hinge losses, one can solve it in the primal
domain as well

libsvm and liblinear are good libraries for solving RER formulations

Part 1: Linear Classifiers

Binary Classifiers

How to obtain nonlinear classifiers? I

−2 −1 0 1 2
−3

−2

−1

0

1

2

Feature 1

F
ea

tu
re

 2

Sometimes, class data are not
separable by a line!

Replace x with φ(x) which is a
nonlinear mapping into a higher
dimensional space

If φ(x) is known explicity, you
may use it instead of x to solve
the problem

Use the kernel trick to replace inner products with the kernel
function: φ(xi)

Tφ(xj) = K (xi , xj)

Part 1: Linear Classifiers

Binary Classifiers

How to obtain nonlinear classifiers? II

No need to know what φ(.) is, if we use the kernel trick (φ can be
infinite dimensional) → just replace inner products with the kernel
function

Kernel versions usually solved in the dual, but it was shown it is
possible to solve in the primal as well [Chapelle, 2007]

We will not focus on kernel versions of these classifiers in this talk!

linear classifiers are as good as or better than kernel versions for large
scale learning [Fan et al., 2008]

Part 1: Linear Classifiers

Multi-class classification

Outline

1 Binary Classifiers

2 Multi-class classification

Part 1: Linear Classifiers

Multi-class classification

Multi-class classification

Using multiple binary classifiers and combining them (multiple
machine)

One-vs-all
One-vs-one
Error correcting output codes (ECOC)

Direct multi-class classification (single machine) (explanation next
slide)

A paper compared these approaches and found that one-vs-one gave
the best result (used in libsvm) [Hsu and Lin, 2002]

For structured classification, we need direct multi-class classification
since almost impossible to enumerate all possible output labels (topic
of future lectures)

Part 1: Linear Classifiers

Multi-class classification

Linear multi-class classification

Given training data {(xi , yi) : i ∈ [N]} where xi ∈ IRd and
yi ∈ Y = [M]

xi = [xi ,1, xi ,2, . . . , xi ,d]T are feature vectors, yi are class identities

Find a set of weight vectors w̃y ∈ IRd+1 such that for test data x, we
obtain a score for class y as w̃T

y x̃ = wT
y x + by

Classification is done by ŷ = arg maxy w̃T
y x̃

Each w̃y represents a hyperplane in IRd+1

Part 1: Linear Classifiers

Multi-class classification

Geometry of linear multi-class discriminants

R

Rblue

Rred

Rgreen

Part 1: Linear Classifiers

Multi-class classification

Generative multi-class classification I

Given class conditional probability distributions p(x|y)

Obtain class posteriors as:

p(y |x) =
p(x|y)p(y)∑
y ′ p(x|y ′)p(y ′)

If class conditional probability distributions are from the exponential
family

p(x|y ;θy) = h(x) exp
{
θT
y t(x)− A(θy)

}
where θ are the parameters (or transformed parameters) of the pdf,
t(x) is the sufficient statistics vector, A(θ) is the log-partition
function and h(x) is a base measure independent of the parameters.

Part 1: Linear Classifiers

Multi-class classification

Generative multi-class classification II

Then, the conditional likelihood has the form:

p(y |x) =
exp{w̃T

y φ(x)}∑
y ′ exp{w̃T

y ′φ(x)}

where w̃y =
[
θT
y ,−A(θy) + log(p(y))

]T
and φ(x) =

[
t(x)T , 1

]T
This form of the conditional likelihood is called normalized
exponential or softmax function.

Hence, if we map the features x using the sufficient statistics and add
a constant feature, conditional likelihood will have a log-linear form

Part 1: Linear Classifiers

Multi-class classification

Generative multi-class classification III

For example, for the Gaussian setup with means µy and equal
covariances (known Σ) (multi-class FLD), we get the following

θy = µy

t(x) = x

wy = Σ−1µy

by = −1

2
µTy Σ−1µy + log(p(y)) (6)

Exercise: Perform the same analysis when both µy and Σy are
different for each class. What are the sufficient statistics and
parameters then?

Part 1: Linear Classifiers

Multi-class classification

Multi-class (multinomial) logistic regression I

Assuming p(y |x) =
exp{w̃T

y φ(x)}∑
y ′ exp{w̃T

y ′φ(x)}
we can maximize the

conditional log-likelihood of the training data

log p(y1, . . . , yN |x1, . . . , xN) =
N∑
i=1

log p(yi |xi)

This yields the following negative log likelihood (NLL) objective
function to minimize

N∑
i=1

−w̃T
yi
φ(xi) + log

∑
y ′

exp{w̃T
y ′φ(xi)}

This objective can be minimized using gradient-based techniques.

Part 1: Linear Classifiers

Multi-class classification

Multiclass SVM I

Multiclass SVM was formulated in [Crammer and Singer, 2001] as
follows

First define w = [wT
1 ,w

T
2 , . . . ,w

T
M]T as concatenation of weight

vectors.

min
1

2
||w||2 + C

N∑
i=1

ξi

subject to:

w̃T
yi

x̃i − w̃T
y ′ x̃i ≥ 1− ξi , ∀i , y ′ 6= yi

ξi ≥ 0 (7)

Let ȳi = arg maxy ′ 6=yi w̃T
y ′ x̃i

Part 1: Linear Classifiers

Multi-class classification

Multiclass SVM II

The first set of inequalities can also be written as:

w̃T
yi

x̃i − w̃T
ȳi

x̃i ≥ 1− ξi , ∀i

The problem can be formulated as an unconstrained minimization
problem as follows:

min
1

2
||w||2 + C

N∑
i=1

(1− w̃T
yi

x̃i + max
y ′ 6=yi

w̃T
y ′ x̃i)+

In multi-class classification, some class pairs may be less costly to be
confused, so we can define a label-loss function ∆(y , y ′) which gives
a cost to replacing y with y ′ during classification, which can be
incorporated in the SVM constraints formulation [Tsochantaridis
et al., 2005]

Part 1: Linear Classifiers

Multi-class classification

Multiclass SVM III

“Margin rescaling” yields the set of constraints

w̃T
yi

x̃i − w̃T
y ′ x̃i ≥ ∆(yi , y

′)− ξi , ∀i , y ′ 6= yi

whereas “slack rescaling” yields the following set of constraints

w̃T
yi

x̃i − w̃T
y ′ x̃i ≥ 1− ξi

∆(yi , y ′)
, ∀i , y ′ 6= yi

There is a cutting-plane algorithm in [Tsochantaridis et al., 2005]
which solves a series of constrained optimization algorithms to solve
these problems

Furthermore, [Joachims et al., 2009] introduced 1-slack constraints,
1-slack formulation with margin rescaling uses the constraints

1

N

N∑
i=1

(w̃T
yi

x̃i − w̃T
y ′
i
x̃i) ≥

1

N

N∑
i=1

∆(yi , y
′
i)− ξ, ∀(y ′i)

N
i=1

Part 1: Linear Classifiers

Multi-class classification

Multiclass SVM IV

1-slack formulation with slack rescaling is also provided in the same
paper

There are efficient cutting-plane algorithms in [Joachims et al., 2009]
for solving 1-slack problems in the dual space

These solvers are provided in the svm-struct package

Part 1: Linear Classifiers

Multi-class classification

Regularized empirical risk for multi-class I

Remembering RER

R̂(θ) =
1

N

N∑
i=1

L (fθ(xi), yi) + Ω(θ)

For multi-class, the parameters are w̃ = [w̃T
1 , . . . , w̃

T
M]T and the loss

functions for each type are as follows:

multi-class FLD:

L (fw̃(xi), yi) =
M∑
y=1

(w̃T
y x̃i − t(y , yi))2

where t(y , yi) are appropriate targets for class y for least squares
regression when the true class is yi

Part 1: Linear Classifiers

Multi-class classification

Regularized empirical risk for multi-class II

[Ye, 2007] shows that using t(y , yi) =
√
N/Ny −

√
Ny/N when

y = yi and t(y , yi) = −
√

Nyi/N otherwise, is equivalent to linear
discriminant analysis

FLD is equivalent to using a least squares loss function

multi-class LR:

L (fw̃(xi), yi) = −w̃T
yi

x̃i + log

∑
y ′

exp{w̃T
y ′ x̃i}

multi-class SVM:

L (fw̃(xi), yi) = (1− w̃T
yi

x̃i + max
y ′ 6=yi

w̃T
y ′ x̃i)+

Part 1: Linear Classifiers

Multi-class classification

Regularized empirical risk for multi-class III

Re-writing the SVM loss function is possible as follows:

L (fw̃(xi), yi) = −w̃T
yi

x̃i + max
y ′

(w̃T
y ′ x̃i + 1− δy ,yi)

This form is equivalent to the one before since this is guaranteed to
be nonnegative

We can generalize using label-loss ∆(y , y ′) and “margin rescaling”
introduced before to get

L (fw̃(xi), yi) = −w̃T
yi

x̃i + max
y ′

(w̃T
y ′ x̃i + ∆(yi , y

′))

We can replace the max with a softmax (log-sum-exp) to get an
“approximation” SVM-softmax

L (fw̃(xi), yi) = −w̃T
yi

x̃i + log

∑
y ′

exp{w̃T
y ′ x̃i + ∆(yi , y

′)}

Part 1: Linear Classifiers

Multi-class classification

Regularized empirical risk for multi-class IV

Comparing the LR loss function with the SVM-softmax one, we see
that they are similar except for the addition of the label-loss function
to provide additional margin for confusable classes in the
SVM-softmax

It is possible to get the RER expression for “slack rescaling” and
1-slack versions of margin and slack rescaling as well

For other possible loss functions, for example see [LeCun et al., 2006]

Part 1: Linear Classifiers

Multi-class classification

Optimization algorithms I

Multi-class FLD has closed from solution

Multi-class LR can be solved using Newton’s method in the primal
yielding an iterative re-weighted least squares algorithm

Multi-class SVM can be directly solved from the dual problem
[Crammer and Singer, 2001, Fan et al., 2008] especially if number of
training samples N is small

Cutting-plane algorithms are attractive alternatives [Tsochantaridis
et al., 2005, Joachims et al., 2009]

Multi-class SVM-softmax can be solved using Newton’s method in
the primal

If Newton algorithm’s Hessian is too big to be computed efficiently,
L-BFGS can be used

Stochastic gradient algorithms are fast and applicable, but need to be
careful with convergence and choosing step sizes [Bottou, 2004]

Part 1: Linear Classifiers

Multi-class classification

Optimization algorithms II

The optimal choice of the algorithm depends on the values of feature
dimension d , number of classes M and number of training samples N

Part 1: Linear Classifiers

Multi-class classification

Log-linear models

A general log-linear model is given by:

p(y |x; w) =
1

Z (x ,w)
exp

∑
j

wjFj(x, y)

where

Z (x ,w) =
∑
y ′

exp

∑
j

wjFj(x, y ′)

is called the partition function.

Note that multi-class LR is a log-linear model where we define a
concatenated weight vector w = [w̃T

1 , . . . , w̃
T
M]T and where the

feature vector F (x, y) = x̃⊗ ey where ey is the unit vector with one in
position y and zeros elsewhere and ⊗ denotes the Kronecker product.

Part 1: Linear Classifiers

Multi-class classification

References I

Christopher M Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

Leon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von
Luxburg, editors, Advanced Lectures on Machine Learning. LNAI 3176,
2004.

Olivier Chapelle. Training a Support Vector Machine in the Primal. Neural
Computation, 19(5):1155–1178, 2007.

K Crammer and Y Singer. On the algorithmic implementation of
multiclass kernel-based vector machines. Journal of Machine Learning
Research, 2:265–92, 2001.

R E Fan, K W Chang, C J Hsieh, X R Wang, and C J Lin. Liblinear: A
library for large linear classification. Journal of Machine Learning
Research, 9:1871–74, 2008.

Part 1: Linear Classifiers

Multi-class classification

References II

J H Friedman. Regularized discriminant analysis. J. Amer. Statistical
Assoc., 84:165–175, 1989.

Ulrich Hoffmann. Bayesian machine learning applied in a brain-computer
interface for disabled users. PhD thesis, EPFL, 2007.

C W Hsu and C J Lin. A comparison of methods for multi-class support
vector machines. IEEE Transactions on Neural Networks, 13:415–25,
2002.

T Joachims, T Finley, and C N J Yu. Cutting-plane training of structural
SVMs. Machine Learning, 77(1):27–59, October 2009.

Yann LeCun, Sumit Chopra, Raia Hadsell, Ranzato Marc’Aurelio, and
Fu-Jie Huang. A tutorial on Energy based learning. In G. Bakir,
T. Hofman, B. Schlkopf, A. Smola, and B. Taskar, editors, Predicting
Structured Data. MIT Press, 2006.

Part 1: Linear Classifiers

Multi-class classification

References III

Olvi L Mangasarian. Exact 1-Norm Support Vector Machines Via
Unconstrained Convex Differentiable Minimization. Journal of Machine
Learning Research, 7:1517–30, 2006.

J A K Suykens and J Vandewalle. Least squares support vector machine
classifiers. Neural Processing Letters, 9(3):293–300, June 1999.

I Tsochantaridis, T Joachims, T Hoffman, and Y Altun. Large margin
methods for structured and interdependent output variables. Journal of
Machine Learning Research, 6:1453–84, December 2005.

Jieping Ye. Least squares linear discriminant analysis. In International
Conference on Machine Learning, volume 227, pages 1083–97, 2007.

W S Zheng, J H Lai, and P C Yuen. Perturbation LDA: learning the
difference between the class empirical mean and its expectation. Pattern
Recognition, 42(5):764–779, 2009.

Part 1: Linear Classifiers

	Binary Classifiers
	Multi-class classification
	References

