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Best-first search has been recently utilized for compressed sensing (CS) by the A⋆

orthogonal matching pursuit (A⋆OMP) algorithm. In this work, we concentrate on
theoretical and empirical analyses of A⋆OMP. We present a restricted isometry property
(RIP) based general condition for exact recovery of sparse signals via A⋆OMP. In addition,
we develop online guarantees which promise improved recovery performance with the
residue-based termination instead of the sparsity-based one. We demonstrate the
recovery capabilities of A⋆OMP with extensive recovery simulations using the adaptive-
multiplicative (AMul) cost model, which effectively compensates for the path length
differences in the search tree. The presented results, involving phase transitions for
different nonzero element distributions as well as recovery rates and average error, reveal
not only the superior recovery accuracy of A⋆OMP, but also the improvements with the
residue-based termination and the AMul cost model. Comparison of the run times
indicates the speed up by the AMul cost model. We also demonstrate a hybrid of OMP
and A⋆OMP to accelerate the search further. Finally, we run A⋆OMP on sparse images to
illustrate its recovery performance for more realistic coefficient distributions.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

A⋆ orthogonal matching pursuit (A⋆OMP) [1] aims at
combination of best-first tree search with the orthogonal
matching pursuit (OMP) algorithm [2] for the compressed
sensing problem. It incorporates the A⋆ search technique
[3,4] to increase the efficiency of the search over the tree
representing the hypotheses space consisting of sparse
candidates. Dedicated cost models have been proposed in
order to make the search intelligently guided and tractable.
The empirical investigation in [1] implies significant recov-
ery improvements over conventional compressed sensing
methods. The recently introduced adaptive-multiplicative
aeli 41470, Turkey.
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Erdogan).
cost model has led to further speed and accuracy improve-
ments in the preliminary empirical findings of [5].

This paper addresses a detailed theoretical and experi-
mental study of A⋆OMP algorithm particularly when the
number of elements in the sparse solution is not restricted to
the sparsity level K of the underlying signal. This is obtained
by enforcing a residue-based termination criterion. We
analyze the theoretical performance of the algorithm using
the restricted isometry property. The analyses cover two
possible cases for the length of the returned solution, namely
when it is restricted to K nonzero elements, and when more
than K elements are allowed. In addition, the impacts of the
adaptive-multiplicative cost model and the residue-based
termination criterion on the recovery speed and accuracy are
evaluated via comprehensive simulations involving different
signal statistics, phase transitions and images in comparison
to conventional recovery algorithms.
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Fig. 1. OMP vs. evaluation of A⋆OMP search tree.

N.B. Karahanoglu, H. Erdogan / Signal Processing 118 (2016) 62–74 63
1.1. Compressed sensing

The fundamental goal of compressed sensing (CS) is to
unify data acquisition and compression by observing a
lower dimensional vector y¼Φx instead of the signal x,
where ΦARM�N is the (generally random) measurement
matrix,1yARM , and xARN . The dimensionality reduction
follows MoN, as a result of which x cannot be directly
solved back from y. Alternatively, assuming x is K-sparse
(i.e., it has at most K nonzero components), or compres-
sible, x can be recovered under certain conditions by
solving

minJxJ0 subject to y¼Φx ð1Þ
where JxJ0 denotes the number of nonzero elements in x.

As the direct solution of (1) is intractable, approximate
solutions have emerged in the CS literature. Convex opti-
mization algorithms [6–9] relax (1) by replacing JxJ0 with
its closest convex approximation JxJ1. Greedy algorithms
[2,10–14] provide simple and approximate solutions via
iterative residue minimization. Other recovery schemes
include Bayesian methods [15,16], nonconvex approaches
[17–20], iterative reweighted methods [21–23], etc.

1.2. A⋆ orthogonal matching pursuit

OMP is among the most acknowledged greedy algorithms
for sparse recovery [24–26]. It aims at iterative detection of
the support, i.e., the set of indices corresponding to nonzero
coefficients, of x. At each iteration, OMP identifies the best
match to the residue of y among the atoms, i.e., columns of
Φ, by choosing the index of the atom with maximum
correlation. That is, OMP is structurally based on continuous
expansion of a single hypothesis, represented by a single
iteratively expanded support estimate, or path.

On the other hand, simultaneous evaluation of multiple
hypotheses for the sparse support may improve recovery
over the single-path algorithms like OMP. Multiple
hypotheses may be represented by a search tree, and the
recovery problem can be efficiently solved by sophisti-
cated best-first search techniques. To promote this idea,
the authors have introduced the A⋆OMP algorithm [1,5]
which is an iterative semi-greedy approach that utilizes A⋆

search on a multiple hypotheses search tree in order to
find an approximation of (1). The nodes of the tree contain
indices of the selected atoms, and the paths represent the
candidate support sets for x. Fig. 1 illustrates the evalua-
tion of such a tree in comparison to OMP. At each iteration,
A⋆OMP first selects the best path with the minimum cost
criterion which depends on the ℓ2 norm of the path
residue. Then, the best path is expanded by exploring B
of its child nodes with maximum correlation to the path
residue. That is, B new candidate support sets are
appended to the tree. The filled nodes in Fig. 1 indicate
the child nodes explored per step, which are referred to as
ΔT in the rest.
1 A more general model involves a structured dictionaryΨ for sparse
representation of x, i.e., x¼Ψz where z is sparse and x is not. In this
more general case, observation model can be written as y¼ΦΨz. For
simplicity, we omit Ψ and treat x as sparse.
In Fig. 1, although the OMP solution is among the
hypotheses in the tree, A⋆OMP returns a different support
set. In fact, if OMP were successful, A⋆OMP would also
return the same solution. This typical example of OMP
failure, where the best-first search identifies the true
solution by simultaneous evaluation of multiple hypoth-
eses, illustrates how the multiple path strategy improves
the recovery.

Despite this simple illustration, combining the A⋆ search
with OMP is not straightforward. It necessitates properly
defined cost models which enable the A⋆ search to perform
the stage-wise residue minimization in an intelligent manner,
and effective pruning techniques which make the algorithm
tractable. Various structures are introduced in [1,5] for the
cost model, which is vital for the comparison of paths with
different lengths. Pruning strategies, which enable a
complexity-accuracy trade-off together with the cost model,
are detailed in [1]. Below, we provide a summary of A⋆OMP,
and refer the interested reader to [1,5] for the details.

1.2.1. Notation
Before the summary, we clarify the notation in this

paper. We define S as the set of all paths in the search tree.
T is the true support of x. T i, ri, li and f ðT iÞ denote the
support estimate, residue, length and cost of the ith path,
respectively. x̂ i is the estimate of x given by the ith path.
The best path at a certain step is referred to as b. As
mentioned above, ΔT represents the set of indices
selected during the expansion of b, i.e., the indices of the
B largest magnitude elements in Φnrb, where Φn denotes
the conjugate of Φ. ϕj is the jth column of Φ. ΦJ denotes
the matrix composed of the columns of Φ indexed by the
set J . Similarly, xJ is the vector of the elements of x
indexed by J . Kmax is the maximum number of allowable
nodes along a path in the A⋆OMP search tree. We say that
path i complete if li ¼ Kmax.

1.2.2. Brief overview of A⋆OMP
A⋆OMP initializes the search tree with I paths of a

single node each. These nodes represent the indices of the
I largest magnitude elements inΦny. At each iteration, the
algorithm first selects the best path b among the incom-
plete paths in the search tree with minimum cost. Then,
ΔT is chosen as the indices of the B largest magnitude
elements in Φnrb. This implies B candidate paths, each of
which expands b with a single index in ΔT . Each candi-
date path is opened unless an equivalent path has been
explored before (equivalent path pruning [1]). For each new
path i, ri is given by the projection error of y ontoΦT i , and
the cost f ðT iÞ is computed as a function of ri. Finally, all but
the best P paths with minimum cost are pruned (tree size



Table 1
Comparison of A⋆OMP mechanisms.

Initial version [1,5] Modified version

Best path selection Among all paths Among incomplete paths
Termination criteria (The residue is small enough) or

(The best path is complete)
The residue is small enough
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pruning [1]). Selection and expansion of the best path are
repeated until either some path i satisfies Jri J2rεJyJ2,
or all P paths are complete. The pseudo-code for A⋆OMP is
given in Algorithm 1.

Algorithm 1. A⋆ orthogonal matching pursuit.

1: Input: Φ, y

2: Define: P, I, B, Kmax, ε, fαMul or αAMulg
3: Initialize: T i ¼∅, ri ¼ y 8 i¼ 1;2;…; P, b¼ f1g
4: ΔT ¼ arg max

J ;jJ j ¼ I

P
jAJ j〈ϕj ; y〉j

5: for i¼1 to I do ▹ I paths of length 1

6: T i ¼ fith index in ΔT g, ri ¼ y� 〈y;ϕT i 〉ϕT i

7: end for
8: while ba∅ do
9: ΔT ¼ arg max

J ;jJ j ¼ B

P
jAJ j〈ϕj ; r

b〉j ▹ B children of b

10: ~T ¼ T b

11: p¼ b ▹ first to be replaced
12: for i¼1 to B do ▹ expansion

13: bT ¼ ~T [ fith index in ΔT g ▹ candidate path
14: z¼ argmin

ẑ
Jy�ΦbT ẑ J2 ▹ orthogonal projection

15: r̂ ¼ y�ΦbT z ▹ update residue

16: if ðJ r̂ J2rεJyJ2Þ ▹ check residue

17: return bT ▹ terminate
18: end if

19: if f ðbT Þo f ðT pÞ and ðbT =2SÞ ▹ pruning

20: T p ¼ bT , rp ¼ r̂
21: end if

22: p¼ arg max
iA1;2;…;P

f ðT iÞ ▹ worst path (replaced next)

23: end for

24: b¼ arg min
iA1;2;…;P;li oKmax

f ðT iÞ ▹ best incomplete path

25: end while

26: b¼ arg min
iA1;2;…;P

f ðT iÞ ▹ best (complete) path

27: return T b
1.2.3. Termination criteria
The outline presented above is slightly different from

the introduction of A⋆OMP in [1,5]. The best path selection
and termination mechanisms of A⋆OMP are modified in
order to improve the theoretical guarantees of the algo-
rithm. In [1,5], the best path is selected among all paths in
the tree. Accordingly, the search terminates either when
(i)
 the best path is complete (lb ¼ ¼ Kmax), or

(ii)
 the residue is small enough (JrJ2oϵJyJ2).
2 Note that this already indicates a recovery failure.
Actually, (i) appears here as a consequence of the best path
choice involving complete paths in addition to the incom-
plete ones. Since the best path is chosen using the cost
function, this termination criterion depends on the cost
model. To guarantee exact recovery with this scheme, the
cost model should exhibit some sense of optimality, i.e., it
should assign potentially true paths lower costs than false
complete paths. This is necessary to ensure that some false
complete path does not become the best path. However,
optimality of the cost model is analytically hard to guaran-
tee. This becomes an obstacle for obtaining theoretical
guarantees independent of the cost models.

To overcome this problem, the dependency of the
termination on the cost function, i.e., termination criterion
(i), should be removed. For this purpose, we modify
A⋆OMP as follows:
(i)
 The best path is selected among the incomplete paths
in the tree (Algorithm 1, line 24).
(ii)
 The search terminates when the residue is small
enough (Algorithm 1, lines 16 and 17).
To ensure termination, the best complete path is returned
as the solution only when all paths are complete, but none
of them satisfies the termination criterion on the
residue2 (Algorithm 1, lines 26 and 27). These modifications
are listed in Table 1. In this structure, termination does not
directly rely on the cost model, hence stronger exact
recovery guarantees may be obtained. The results in this
paper are obtained with the modified version of the
algorithm. Note that, based on the authors' experience, this
modification does not have a significant effect on the
empirical performance of the algorithm. Yet, it is critical
for the theoretical analysis. The rest of this paper concen-
trates on the modified version of the algorithm without
explicit referral.

The termination parameters in Algorithm 1, Kmax and ε,
can be adjusted for different termination behavior. In [1],
each path is limited to K nodes, i.e., Kmax ¼ K . We call this
sparsity-based termination, and denote by A⋆OMPK .
Another alternative is the residue-based termination such
as in [5], where more than K nodes are allowed along a
path by setting Kmax4K and ε is selected small enough
based on the noise level. This version is referred to as
A⋆OMPe. Preliminary results in [5] indicate that A⋆OMPe
yields not only better recovery but also faster termination
than A⋆OMPK . With the flexibility on choosing Kmax and ε,
we apply both termination criteria in Algorithm 1.

1.2.4. Cost models
To select the best path, A⋆OMP should compare the costs

of paths with different lengths. This necessitates proper cost
models which can compensate for the differences in path
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lengths. Some novel models have been proposed in [1,5]. In
this work, we employ the multiplicative (Mul) [1] and
adaptive-multiplicative (AMul) [5] models, following their
superior recovery capabilities demonstrated in [1,5].

The Mul cost model relies on the expectation that
unexplored nodes decrease ri

�� ��
2 by a constant rate

αMulAð0;1Þ:

fMulðT iÞ ¼ αKmax � li

Mul ri
�� ��

2:

Note that we replace K in [1] with Kmax to allow for
different termination criteria. [1] demonstrates that
decreasing αMul improves recovery accuracy, while the
search gets slower.

The AMul model is a dynamic extension of the Mul
model:

f AMul T i
� �

¼ αAMul

ri
li

��� ���
2

ri
li �1

��� ���
2

0B@
1CA

K
max� li

ri
li

��� ���
2

ð2Þ

where ril denotes the residue after the first l nodes of the
path i, and αAMulAð0;1� is the cost model parameter.

The AMul cost model relies on the following assump-
tion: each unexplored node would reduce ri

�� ��
2 by a rate

proportional to the decay occurred during the last expan-
sion of the path i. This rate is modeled by the auxiliary

term αAMul ri
li

��� ���
2
= ri

li �1

��� ���
2
, and the exponent Kmax� li

extends this to all unexplored nodes along path i. The
motivation is intuitive: since the search is expected to
select nodes with descending correlation to Y, a node is
expected to reduce ri

�� ��
2 less than its ancestors do. Note

that this condition may be violated for a particular node.
However, the auxiliary term is mostly computed over a
number of nodes instead of a single one. Hence, it is
practically sufficient if this assumption holds for groups of
nodes. Moreover, the tree usually contains multiple paths
which may lead to the correct solution. The fact that some
of these paths violate this assumption does not actually
harm the recovery. This behavior is similar to the other
cost models in [1]. The empirical results in Section 3
indicate that these cost models are useful in practice.

The adaptive structure of the AMul model allows for a
larger α than the Mul model. This reduces the auxiliary
term. Consequently, the search favors longer paths,
explores fewer nodes and terminates faster as demon-
strated in Section 3.

In the rest, we identify the cost model employed by
A⋆OMP with an appropriate prefix. AMul�A⋆OMP and
Mul�A⋆OMP denote the use of AMul and Mul cost models,
respectively.

1.2.5. Relations of A⋆OMP to recent proposals
One of the first and trivial combinations of the tree search

with matching pursuit type algorithms has been suggested
in [27] in 2001. Two strategies have been considered for
exploring a tree with branching factor K, that is where each
node has K children only.3 MP:K has a depth-first nature, that
3 In this context, K is not related to the sparsity level of x as before.
We denote the branching factor as K in order to be consistent with [27].
is the candidate paths are explored one by one. The
algorithm first explores a complete path up to the maximum
depth. If this path does not yield the desired solution, the
tree is backtracked and other candidates are explored
sequentially until the solution is found. The other variant,
MP:M-L, is based on breadth-first search. It processes all leaf
nodes at a certain depth at once by exploring K children of
each leaf and keeps the best M among the new candidates.
The process is repeated until tree depth becomes L, and the
path with the lowest residual is returned.

This idea has recently been revisited in [28], where the
algorithm is referred to as multipath matching pursuit
(MMP). As in [27], breadth-first (MMP-BF) and depth-first
(MMP-DF) strategies have been evaluated to explore a
search tree with branching factor L. For tractability, MMP-
DF sets a limit on the number of sequentially explored
paths. As a novel contribution, [28] provides RIP-based
theoretical guarantees for MMP. Note that these guaran-
tees are applicable when the number of new paths per
level or the number of explored paths are not limited, i.e.,
when no pruning is applied.

Though both ideas are based on exploring a search tree,
these algorithms are fundamentally different than A⋆OMP,
where the tree search is guided by adaptive cost models in
an intelligent manner. Instead, MMP-BF and MMP-DF are
rather unsophisticated techniques where tree search fol-
lows a predefined order. We compare A⋆OMP and MMP
via recovery simulations in Section 3. MMP-DF is chosen
among the two variants, since it is referred to as the
practical one in [28].

1.3. Outline and contributions

This paper at hand concentrates on detailed analyses of
the sparse signal recovery performance of A⋆OMP. Particu-
larly, we concentrate on the variant AMul�A⋆OMPe which
extends the general form in [1] by the novel AMul cost
model from [5] and residue-based termination. We present
new theoretical and empirical results to demonstrate the
superiority of this variant not only over the A⋆OMP variants
in [1], but also over some conventional sparse recovery
methods. Note that AMul-A⋆OMPe has only been prelimi-
narily tested in [5] by a set of limited simulations, which are
far away from providing enough evidence to generalize its
performance. This paper presents a detailed empirical
investigation of AMul-A⋆OMPe, without which the perfor-
mance analyses would not be complete. These simulations
significantly enrich the findings of [5] by previously unpub-
lished results which include phase transition comparisons
for different signal statistics, demonstration on an image, a
faster hybrid approach and optimality analyses. The results
reveal not only the superior recovery accuracy of
AMul�A⋆OMPe, but also the improvements in the speed
of the algorithm due to the residue-based termination and
the AMul cost model.

On the other hand, our theoretical findings not only
include RIP-based exact recovery guarantees for exact
recovery of sparse signals via A⋆OMPK and A⋆OMPe, but
also provide means for comparison of different termina-
tion criteria. The former states RIP conditions for the exact
recovery of sparse signals from noise-free measurements,
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while the latter addresses the recovery improvements
when the residue-based termination is employed instead
of the sparsity-based one. For the analyses, we employ a
method similar to the analyses of the OMP algorithm in
[26,29]. In Section 2.3, we develop a RIP condition for the
success of a single A⋆OMP iteration, which forms a basis
for the following theoretical analyses. In Section 2.4, we
derive a general recovery condition for exact recovery via
A⋆OMPK . As intuitively expected, this condition is less
restrictive than the K-step OMP recovery condition [26].
Section 2.5 presents a very similar general condition for
exact recovery via A⋆OMPe. In addition, we establish an
online recovery condition for exact recovery of a signal
with A⋆OMPe. Section 2.7 compares the general and online
recovery conditions, clarifying that the latter is less
restrictive. This suggests that A⋆OMPe possesses stronger
recovery capabilities than A⋆OMPK .

Section 3 compares the recovery accuracy of
AMul�A⋆OMPe to other A⋆OMP variants, basis pursuit (BP)
[6], subspace pursuit (SP) [10], OMP [2], iterative hard
thresholding (IHT) [11], iterative support detection (ISD)
[21], smoothed ℓ0 (SL0) [17], MMP [28], and forward–back-
ward pursuit (FBP) [12]. The main contribution is the phase
transitions which are obtained by computationally expensive
experiments for different signal types. These generalize the
strong recovery capability of AMul�A⋆OMPe over a wide
range of N, M and K. We investigate the recovery rates and
average recovery error as well. Run times illustrate the
acceleration with the AMul cost model and the residue-
based termination. An hybrid of A⋆OMPe and OMP demon-
strates how the recovery speed can be improved without
losing the accuracy. The sparse image recovery problem
represents a more realistic coefficient distribution than the
other artificial examples.
2. Theoretical analysis of A⋆OMP

In this section, we develop theoretical guarantees for
signal recovery with A⋆OMP. We first visit the restricted
isometry property and then provide some related preli-
minary lemmas. Then, we concentrate recovery with
A⋆OMP.
2.1. Restricted isometry property

Restricted isometry property (RIP) [7] provides an
important means for theoretical guarantees in sparse
recovery problems. A matrix Φ is said to satisfy the L-
RIP if there exists a restricted isometry constant (RIC)
δLAð0;1Þ satisfying

ð1�δLÞJxJ22r JΦxJ22rð1þδLÞJxJ22; 8x: JxJ0rL:

Some random matrices, such as Gaussian or Bernoulli
matrices, satisfy the L-RIP with high probabilities if L, M
and N satisfy some specific conditions [30,31]. Exploiting
this property, RIP has been utilized to obtain recovery
guarantees for sparse recovery algorithms [7,29,31–33].
2.2. Preliminaries

We now present some preliminary lemmas based on
RIP:

Lemma 1 (Monotonicity of the RIC, Dai and Milenkovic
[10]). Let R and S be positive integers such that R4S. Then,
δRZδS.

Lemma 2 (Lemma 2, Wang and Shim [26]). Let I �
f1;2;…;Ng and jI j denote the cardinality of I . For any
arbitrary vector zARjI j, RIP directly leads to

ð1�δjI jÞJzJ2r JΦn

IΦIzJ2rð1þδjI jÞJzJ2:

Lemma 3 (Lemma 1, Dai and Milenkovic [10]). Let
I ;J � f1;2;…;Ng such that I \ J ¼∅. For any arbitrary
vector zARjJ j

JΦn

IΦJ zJ2rδjI jþ jJ j JzJ2:

Lemma 4. Let K and B be positive integers, and ⌈z⌉ denote
the smallest integer greater than or equal to z. Then,

δKþB4
δ3⌈K=2⌉

3
:

Proof. Corollary 2 of [29] states that Lemma 4 holds for
B¼ 1. By Lemma 1, δKþBZδKþ1 for B41. Hence, Lemma 4
also holds for B41.□

Lemma 5. Assume KZ ð3þ2
ffiffiffi
B

p
Þ2. There exists at least one

positive integer ncoK such that

3
ffiffiffi
B

pffiffiffiffi
K

p
þ

ffiffiffi
B

p r
ffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc

p þ
ffiffiffi
B

p : ð3Þ

Moreover, nc values which satisfy (3) are bounded by

K4ncZ
8Kþ4

ffiffiffiffiffiffiffi
BK

p
�4B

9
: ð4Þ

Proof. We set K�nc ¼ sK and replace into (3):

3
ffiffiffi
B

pffiffiffiffi
K

p
þ

ffiffiffi
B

p r
ffiffiffi
B

pffiffiffiffiffiffi
sK

p
þ

ffiffiffi
B

p :

It can trivially be shown that s is bounded by

0osr
ffiffiffiffi
K

p
�2

ffiffiffi
B

p

3
ffiffiffiffi
K

p
 !2

:

Then, we obtain the lower bound for nc as

nc ¼ 1�sð ÞKZ
8Kþ4

ffiffiffiffiffiffiffi
BK

p
�4B

9
: ð5Þ

Since ncoK , sK ¼ K�ncZ1. This translates as

KZ
1
s
Z

3
ffiffiffiffi
K

pffiffiffiffi
K

p
�2

ffiffiffi
B

p
 !2

from which we deduce the assumption KZ ð3þ2
ffiffiffi
B

p
Þ2.

Combining this result with (5) completes the proof.□

2.3. Success condition of an A⋆OMP iteration

We define the success of an A⋆OMP iteration as ΔT
containing at least one correct index, i.e., ΔT \



Fig. 2. Optimality during the search. The true support is f3;4;6;2g.

4 2KrM is a global condition for the uniqueness of all K-sparse
solutions. Hence this condition is necessary for any sparse recovery
algorithm.

5 As linearly dependent subsets should contain at least Mþ1 col-
umns of Φ, any other solution should be at least ðM�Kþ1Þ-sparse.

N.B. Karahanoglu, H. Erdogan / Signal Processing 118 (2016) 62–74 67
fT �T bga∅. The following theorem guarantees the suc-
cess of an iteration:

Theorem 1. Let nc ¼ jT b \ T j and nf ¼ jT b�T j. When b is
expanded, at least one index in ΔT is in the support of x, i.e.,
ΔT \ fT �T bga∅ if Φ satisfies RIP with

δKþnf þBomin

ffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc

p þ
ffiffiffi
B

p ;
1
2

 !
: ð6Þ

Proof. ΔT can be defined as

ΔT ¼ arg max
J ;jJ j ¼ B

Φn

J r
b

��� ���
2
: ð7Þ

rb is the residue from the orthogonal projection of Y
onto ΦT b . Therefore, rb ? ΦT b , i.e., 〈ϕi; r

b〉¼ 0 if iAT b:

Hence,

Φn

T [T brb
��� ���2

2
¼

X
iAT [T b

ϕi; r
b

D E2
¼

X
iAT�T b

ϕi; r
b

D E2
: ð8Þ

(8) has only K�nc nonzero terms. Combining (8) and (7),
we can write

JΦn

ΔT r
b J2 ¼ max

J ;jJ j ¼ B
JΦn

J r
b J2ZcJΦn

T [T brb J2 ð9Þ

where the inequality holds since J maximizes JΦn

J r
b J2,

and c defines a scaling proportional to the number of
nonzero terms:

c9min

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B

K�nc

s
;1

 !
:

Next, the residue can be written as

rb ¼ y�ΦT b x̂b
T b ¼ΦT xT �ΦT b x̂b

T b ¼ΦT [T bz ð10Þ
where zARKþnf . Using Lemma 2, (9) and (10), we write

JΦn

ΔT r
b J2ZcJΦn

T [T bΦT [T bzJ2Zcð1�δKþnf ÞJzJ2:

Now, suppose that ΔT \ T ¼∅. Then

JΦn

ΔT r
b J2 ¼ JΦn

ΔT ΦT [T bzJ2rδKþnf þB JzJ2

by Lemma 3. Clearly, this never occurs if

cð1�δKþnf ÞJzJ24δKþnf þB JzJ2

or equivalently

δKþnf þB

c
þδKþnf

o1: ð11Þ

Following Lemma 1, δKþnf þBZδKþnf
. Hence, (11) is satis-

fied when ð1=cÞþ1
� �

δKþnf þBo1, or equivalently

δKþnf þBo
c

1þc
¼min

ffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc

p þ
ffiffiffi
B

p ;
1
2

 !
:

This guarantees that ΔT \ T a∅. Moreover, since
〈ϕi; r

b〉¼ 0 for all iAT b, ΔT \ T b ¼∅. Hence, we conclude
ΔT \ fT �T bga∅, that is the A⋆OMP iteration is
successful.□

Below, Theorem 1 is used as a basis for exact recovery.
Note that we assume

ffiffiffi
B

p
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc

p
in the rest and skip the

term 1
2 in Theorem 1 for simplicity. This can be justified by

the fact that B is chosen small (such as 2 or 3) in practice.
2.4. Exact recovery conditions for A⋆OMPK

First, let us introduce some definitions:
Optimal path: Path i is said to be optimal if T i � T .
Optimal pruning: Pruning is defined as optimal if it does

not remove all optimal paths from the tree.
Fig. 2 illustrates the optimality notion with a typical

example. Indices from the true support are shown by the
filled nodes. The optimal paths, which contain filled nodes
only, are designated with ‘þ ’. Since Kmax ¼ K ¼ 4, the paths
become complete with four nodes. The nodes which are
pruned due to P¼3 are crossed. Step 3 exemplifies the
optimal pruning. Though an optimal path is pruned, there
still remains another optimal one. Expanding this optimal
path in Step 5, the search obtains the true solution
represented by the complete and optimal path f3;4;6;2g.

Now, we present the exact recovery condition for
A⋆OMPK :

Theorem 2. Set ε¼ 0 and Kmax ¼ K . Let Φ be full rank and
2KrM hold.4 Assume that pruning is optimal. Then, A⋆OMP
K perfectly recovers all K-sparse signals from noise-free
measurements if Φ satisfies RIP with

δKþBo
ffiffiffi
B

pffiffiffiffi
K

p
þ

ffiffiffi
B

p : ð12Þ

Proof. Let us start with the initialization. With nc ¼ nf ¼ 0,
Theorem 1 assures success of the first iteration.
Next, consider A⋆OMPK selects an optimal path of length

l, i.e., nc ¼ l, at some step. By Theorem 1, expansion of this
path is successful if

δKþBo
ffiffiffi
B

pffiffiffiffiffiffiffiffiffiffi
K� l

p
þ

ffiffiffi
B

p ð13Þ

which is already satisfied when (12) holds.
Now, there exists some optimal paths after initialization.

Moreover, expanding an optimal path introduces at least one
longer optimal path, and by assumption pruning cannot
remove all of these. Altogether, these guarantee the existence
of at least one optimal path in the tree at any iteration.
On the other hand, the criterion ε¼ 0 requires that the

residue should vanish for termination. Since 2KrM and
Φ is full rank, the residue may vanish if and only if T is a
subset of the support estimate.5 Therefore, the search must
terminate at a complete optimal path containing T unless
there remain no optimal paths in the search tree. Together
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Fig. 3. Completeness and p-optimality with respect to nc and nf.
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with the existence of at least one optimal path, this
guarantees exact recovery.
Note that the condition ε¼ 0, stated in Theorem 2 for

the sake of theoretical correctness, translates into a very
small ε in practice to account for the numerical computa-
tion errors.
We observe that the K-step exact recovery condition of

OMP, δKþ1o1=
ffiffiffiffi
K

p
þ1

� �
, is a special case of Theorem 2

when B¼ I ¼ 1. Moreover, when the bounds for OMP and
A⋆OMPK are compared, (12) is clearly less restrictive, which
explains the improved recovery accuracy of A⋆OMPK .
Theorem 2 is closely related to the theoretical analysis of

MMP in [28]. It can be trivially shown that Theorem 2 is
also applicable to MMP. Moreover, it implies a better, i.e.,
less restricted, recovery condition when compared to [28],
where the condition is stated as δKþBo1=

ffiffiffiffi
K

p
þ2

ffiffiffi
B

p� �
.□

2.5. Exact recovery with A⋆OMPe

We extend the definitions in the previous section for
A⋆OMPe where Kmax4K . First, note that path i is now
complete if li ¼ Kmax4K . Next, we introduce the following
definitions:

Potentially optimal path: A path is said to be potentially
optimal (p-optimal) if nf rKmax�K . A p-optimal path can
be expanded into a superset of T with at most Kmax nodes.
Note that an optimal path is a special case where Kmax ¼ K .

Potentially optimal pruning: Pruning is defined as p-
optimal if it does not remove all p-optimal paths from the
search tree.

Fig. 3 depicts some examples of p-optimality and
completeness. Clearly, a path is p-optimal only if a super-
set of T is among its extensions. Moreover, path 1 reveals
that the optimal and p-optimal path notions are equal
when nf ¼ 0.

Next, we state the following lemma:

Lemma 6. Let i be a p-optimal path with nc correct and nf
incorrect indices. If

δKþnf þBo
ffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc

p þ
ffiffiffi
B

p ; ð14Þ

holds for path i, the set of its extensions by each of its best B
children contains at least one p-optimal path with ncþ1
correct indices. Moreover, (15) holds for all p-optimal paths
in this set.

Proof. By Theorem 1, expansion of path i is successful
when (15) holds. Hence, it introduces at least one p-optimal
path, say j, with ncþ1 correct and nf incorrect indices.
Moreover, the upper bounds from (15) are related asffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc

p þ
ffiffiffi
B

p o
ffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc�1

p þ
ffiffiffi
B

p

where the left and right sides are for the upper bounds on
the RIC's corresponding to the number of correct and false
nodes in path i and j, respectively. Since the upper bound is
larger for path j, and (15) holds for path i, (15) should also
hold for path j.□

Now an online recovery condition can be presented for
A⋆OMPe:

Theorem 3. Set ε¼ 0 and KmaxrM�K . Let Φ be full rank.
Assume that pruning is p-optimal. Then, A⋆OMPe perfectly
recovers a K-sparse signal from noise-free measurements if
the search, at any step, expands a path which satisfies
Kþnf rKmax and

δKþnf þBo
ffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc

p þ
ffiffiffi
B

p : ð15Þ

Proof. As Kþnf rKmax, the best path at this step, b, is p-
optimal. Moreover, Lemma 6 and (15) guarantee p-optim-
ality of at least one child of b. By assumption pruning
cannot remove all p-optimal paths. Altogether, these
guarantee the existence of at least one p-optimal path in
the tree until termination. On the other hand, the criterion
ε¼ 0 requires that the residue should vanish for termina-
tion. Since KmaxrM�K and Φ is full rank, the residue
may vanish if and only if the support estimate is a superset
of T . Therefore, the search must terminate at a p-optimal
path containing the true support unless there remain no p-
optimal paths in the search tree. As Φ is full rank, the
orthogonal projection of Y onto this set yields exactly x.
Combining with the existence of at least one p-optimal
path, exact recovery of x is guaranteed.□

Note that the condition ε¼ 0, stated in Theorem 3 for
the sake of theoretical correctness, translates into a very
small ε in practice to account for the numerical computa-
tion errors.

Since Theorem 3 depends on the existence of a p-optimal
path satisfying (15), it does not provide overall guarantees for
all K-sparse signals as Theorem 2 does. In contrast, Theorem 3
implies online guarantees depending on the support estimates
of the intermediate (i.e., neither complete nor empty) p-
optimal paths. In fact, it is hardly possible to provide guaran-
tees for the existence of such paths. Nonetheless, Theorem 3
can be generalized starting with the empty path:

Theorem 4. Set ε¼ 0, IZB and KmaxrM�K . Let Φ be full
rank. Assume pruning is optimal. Then, A⋆OMPe perfectly
recovers all K-sparse signals from noise-free measurements if
Φ satisfies RIP with

δKþBo
ffiffiffi
B

pffiffiffiffi
K

p
þ

ffiffiffi
B

p : ð16Þ

We omit the proof of Theorem 4, since it follows
trivially from Theorem 3 by replacing nf ¼ nc ¼ 0.
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Theorem 4 provides overall guarantees for all sparse
signals as Theorem 2. We observe that both theorems
require the same RIP condition for exact recovery of all
sparse signals.

Although Theorems 2 and 4 provide similar overall
guarantees, A⋆OMPe also possesses the online guarantees
of Theorem 3. Section 2.7 presents an analytical comparison
of the conditions in Theorems 3 and 4. This study states that
Theorem 3 may be satisfied even when Theorem 4 fails.
This reveals the importance of the online guarantees to
comprehend the improved recovery accuracy of A⋆OMPe.

2.6. A note on pruning

Theorems 2 and 4 both rely on optimal/p-optimal pruning,
which is hard to prove analytically. Though this may be seen as
a limitation of the theoretical findings, it is obvious that pruning
is unavoidable for the tractability of the search. As an empirical
justification, it is important to observe that the true solution
may be reached along different paths in the tree. This is due to
the fact that the ordering of the nodes is not important. Hence,
the tree is subject to contain a large number of candidate
solutions (optimal/p-optimal paths), while it is enough for exact
recovery when only one of these optimal paths is not pruned.

Moreover, the theoretical analysis of MMP in [28] is also
subject to an equivalent assumption in practice. Though the
authors analyse MMP without any limit on the number of
explored paths, they acknowledge that this is impractical.
Similar to A⋆OMP, they limit the number of paths for the
empirical evaluation of MMP. It is clear that the theoretical
findings of [28], which do not address this pruning strategy, are
practically meaningful only with an assumption on pruning.

2.7. On the validity of the online guarantees

To address the validity of the online condition in
Theorem 3, we show that it can be satisfied when the
overall guarantees in Theorem 4 fail. The next theorem
reveals that a p-optimal path satisfying (15) may be found
even when (16) fails.

Theorem 5. Assume KZ ð3þ2
ffiffiffi
B

p
Þ2. If 1rnf þBr⌈K=2⌉

and nc satisfies (4) at some intermediate iteration, (15)
becomes less restrictive than (16).

Proof. Assume that

δKþnf þBZ
3
ffiffiffi
B

pffiffiffiffi
K

p
þ

ffiffiffi
B

p : ð17Þ

Since nf þBr⌈K=2⌉, we can write 3⌈K=2⌉ZKþnf þB. By
Lemma 1, we obtain

δ3⌈K=2⌉Z
3
ffiffiffi
B

pffiffiffiffi
K

p
þ

ffiffiffi
B

p :

Then, Lemma 4 yields

δKþB4

ffiffiffi
B

pffiffiffiffi
K

p
þ

ffiffiffi
B

p

which clearly contradicts (12). In contrast, Lemma 5 yields

3
ffiffiffi
B

pffiffiffiffi
K

p
þ

ffiffiffi
B

p r
ffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc

p þ
ffiffiffi
B

p

for nc satisfying (4) when KZ ð3þ2
ffiffiffi
B

p
Þ2. That is, there

exists some range of δKþnf þB such that

3
ffiffiffi
B

pffiffiffiffi
K

p
þ

ffiffiffi
B

p rδKþnf þBr
ffiffiffi
B

pffiffiffiffiffiffiffiffiffiffiffiffiffi
K�nc

p þ
ffiffiffi
B

p :

Hence, under the given conditions, there exists some
δKþnf þB satisfying (15), but no δKþB satisfying (16).□

Theorem 5 clarifies that Theorem 3 may hold evenwhen
Theorem 4 fails. In other words, A⋆OMPe possesses online
guarantees for some sparse signals for which the overall
guarantees fail. This explains why A⋆OMPe improves the
recovery accuracy over A⋆OMPK , and reveals that the
residue-based termination is more optimal for noise-free
sparse signal recovery than its sparsity-based counterpart.

Note that Theorem 5 is based on some nf, nc and K ranges
for which it is provable. This is enough, since even a single
supporting case already establishes the validity of Theorem 3.
On the other hand, we expect it to be valid for a wider range.
This intuition is also supported by the following simulations,
where A⋆OMP e improves recovery in almost all cases.

3. Empirical analyses

We demonstrate A⋆OMP in comparison to BP [6], SP
[10], OMP [2], ISD [21], SL0 [17], IHT [11], FBP [12] and
MMP-DF [28] in various scenarios involving synthetically
generated signals and images. We mainly concentrate on
comparisonwith different algorithms. Regarding the impact
of A⋆OMP parameters such as B, P and α on the recovery
performance, we refer the reader to [1], where the matter
has been discussed with detailed empirical analysis. The
numerical choices of the parameters in this work are mainly
based on these findings, which we do not repeat here.

3.1. Experimental setup

Unless given explicitly, the setup is as follows: We set I¼3,
B¼2 and P¼200. For A⋆OMPe, ε is set to 10�6. This ε is
shared by OMP, which also runs until JrJ2rεJyJ2. We
select αMul ¼ 0:8 for Mul�A⋆OMPK , αMul ¼ 0:9 for Mul�
A⋆OMPe and αAMul ¼ 0:97 for AMul�A⋆OMPe. We employ
FBP with α¼ 0:2M and β¼ α�1 as suggested in [12]. For
MMP-DF, we set the branching factor L¼6 following [28], and
allow a maximum of 200 paths for a fair comparison with the
A⋆OMP variants where P¼200. Each test is repeated over a
randomly generated set of S sparse samples. For each sample,
Φ is drawn from the Gaussian distribution with mean zero
and standard deviation 1/N. The nonzero entries of the test
samples are selected from three random ensembles. The
nonzero entries of the Gaussian sparse signals follow standard
Gaussian distribution while those of the uniform sparse
signals are distributed uniformly in ½�1;1�. The constant
amplitude random sign (CARS) sparse signals have unit
magnitude nonzero elements with random sign. The average
normalized mean-squared-error (ANMSE) is defined as

ANMSE¼ 1
S

XS
i ¼ 1

Jxi� x̂ i J22
Jxi J22

ð18Þ

where x̂ i is the recovery of the ith test vector xi.
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We perform the A⋆OMP recovery using the AStarOMP
software.6 AStarOMP implements the A⋆ search by an
efficient trie7 structure [34], where the nodes are ordered
with priorities proportional to their inner products with Y.
This maximizes the number of shared nodes between
paths, allowing a more compact tree representation and
faster tree modifications. The orthogonal projection is
performed via the QR factorization.

3.2. Exact recovery rates and reconstruction error

The first simulation deals with the recovery of Gaussian
sparse signals, where N¼256, M¼100, KA ½10;50�,
Kmax ¼ 55 and S¼500. The results are depicted in Fig. 4,
which reveals that A⋆OMP performs significantly better than
the other algorithms. A⋆OMPe provides exact recovery until
K ¼ 40, which is clearly the best. We observe similar ANMSE
among A⋆OMP variants, while the residue-based termina-
tion improves the exact recovery rates significantly. Evi-
dently, A⋆OMPe is better than A⋆OMPK at identifying
smaller magnitude entries, which hardly change the ANMSE,
however increase the exact recovery rates. It is also impor-
tant that all A⋆OMP variants yield higher recovery rates than
MMP-DF. Especially, Mul�A⋆OMPK and MMP-DF are inter-
esting to compare since both return solutions with K indices.
We observe that Mul�A⋆OMPK yields significantly higher
recovery rates than MMP-DF, which implies the effectiveness
of the sophisticated search techniques employed in A⋆OMP.

As for the average run times,8 both the residue-based
termination and the AMul cost model significantly accel-
erate A⋆OMP due to the relaxation of α to larger values.
Since AMul�A⋆OMPe can afford the largest α, it is the
fastest A⋆OMP variant. This confirms the claim in Section
1.2 that increasing α reduces the number of explored
nodes and accelerates A⋆OMP.

In addition to this example, [5] contains simulations for
uniform and binary sparse signals and noisy measure-
ments. These simulations indicate that AMul�A⋆OMPe
improves the recovery for uniform sparse signals and
noisy cases as well.

3.3. Phase transitions

Empirical phase transitions provide important means for
recovery analysis, since they reveal the recovery perfor-
mance over the feasible range of M and K. Consider the
normalized measures λ¼M=N and ρ¼ K=M. The phase
transition curve is mostly a function of λ [35], hence it allows
for a general characterization of the recovery performance.

To obtain the phase transitions, we fix N¼ 250, and
alter M and K to sample the fλ;ρg space for λA ½0:1;0:9�
and ρA ½0;1�. For each fλ;ρg tuple, we randomly generate
200 sparse instances and perform the recovery. Setting the
6 Available at http://myweb.sabanciuniv.edu/karahanoglu/research/.
7 Trie is an ordered tree data structure in computer science. The

ordering provides important advantages for the implementation of
A⋆OMP, such as reducing the cost of addition/deletion of paths and
finding equivalent paths.

8 OMP and A⋆OMP are tested using the AStarOMP software. The
other algorithms are ignored as they run in MATLAB, which is slower.
exact recovery criterion as ðJxi� x̂ i J2Þ=Jxi J2r10�2, we
count the exactly recovered samples. The phase transitions
are then obtained as in [35]. For each λ, we employ a
generalized linear model with logistic link to describe the
exact recovery curve over ρ, and then find ρ which yields
50% exact recovery probability. Combination of these ρ
values gives the phase transition curve.

Let us first concentrate on Kmax and define the normal-
ized measure ρmax ¼ Kmax=M. Once we identify the optimal
ρmax over λ, we can set Kmax for particular λ and M. To find
the optimal ρmax, we have run a number of simulations and
observed that the recovery performance of AMul�A⋆OMPe
is quite robust to ρmax, with a perturbation up to 3%. Hence,
the recovery accuracy is mostly independent of ρmax. Yet,
based on our experience, we set ρmax ¼ 0:5þ0:5λ taking into
account both the accuracy and complexity of the search.

Fig. 5 depicts the phase transition curves. Clearly, AMul-
A⋆OMPe yields better phase transitions than the other algo-
rithms for the Gaussian and uniform sparse signals. We also
observe that FBP provides fast approximations with better
accuracy than BP and the two other greedy competitors, SP
and OMP for these two cases. This reveals that FBP is actually
suitable to applications where speed is crucial. On the other
hand, BP and ISD are the best performers for the CARS case,
while AMul�A⋆OMPe is the third best. We observe that BP is
robust to the coefficient distribution, while the phase transi-
tions for AMul�A⋆OMPe and OMP exhibit the highest varia-
tion among distributions. This indicates that OMP-type
algorithms are more effective when the nonzero elements
span a wide magnitude range such as the Gaussian distribu-
tion. Moreover, if this range gets wide enough, even OMP can
outperform BP. In parallel, the CARS ensemble is referred to as
the most challenging case for the greedy algorithms in the
literature [10,35]. This can be understood analytically by
considering the span of the correlation between ΦT and Y.
The detailed analytical analysis in [36] state that this span gets
smaller when the magnitudes of the nonzero elements get
closer, and vice versa. When this span gets smaller (for the
CARS ensemble in the limit), wrong indices are more likely to
be selected by OMP, increasing the failure rate.

3.4. A hybrid approach for faster practical recovery

We have observed that OMP provides exact recovery up
to some mid-sparsity range. Moreover, there are regions
where AMul�A⋆OMPe provides exact recovery while OMP
recovery rates are also quite high. In these regions, we can
accelerate the recovery without sacrificing the accuracy
by a two-stage hybrid scheme. We first run OMP, and
then AMul�A⋆OMPe only if OMP fails. Assuming that
KþKmax�RIP holds, a non-vanishing residue indicates
OMP failure, and then AMul�A⋆OMPe is run. This reduces
the number of AMul�A⋆OMPe runs and accelerates the
recovery. Moreover, we use the order by which OMP
chooses the vectors for setting the priorities of trie nodes.
A vector OMP chooses first gets higher priority, and is
placed at lower levels of the trie. This reduces not only the
trie size but also trie modification costs.

According to the recovery results in Fig. 6,
AMul�A⋆OMPe and the hybrid approach yield identical
exact recovery rates, while the latter is significantly faster.

http://myweb.sabanciuniv.edu/karahanoglu/research/
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Fig. 4. Recovery results and average run time for the Gaussian sparse signals.
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Table 2
PSNR values for images reconstructed using different algorithms. Maximum and minimum PSNR values are shown in bold and in italics, respectively. Mean
PSNR values over the whole set of images are given in the last row of the table.

Image BP OMP SP IHT ISD SL0 MMP-DF AMul�A⋆OMP

B¼2 B¼3

Bridge 29.9 26.9 24.6 19.8 32.1 29.1 36.9 46.8 51.4
Lena 33.5 29.6 27.5 22.9 33.2 30.6 36.4 42.6 47.1
Tracy 40.6 36.8 33.9 27.6 39.4 38.2 43.8 52.5 56.8
Pirate 31.7 27.7 25.3 21.5 32.4 30.3 35.7 40.3 43.4
Cameraman 34.4 30.7 28.5 23 33.9 31.8 37.4 48.3 54.7
Mandrill 28.3 24.4 22.1 19.2 29.7 26.8 32.1 36.3 39.9
Mean PSNR 33.1 29.4 27 22.3 33.5 31.1 37.1 44.5 48.8
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This acceleration is proportional to the exact recovery rate
of OMP. That is, the hybrid approach is faster where OMP is
better. These results show that this approach is indeed
able to detect the OMP failures, and run AMul�A⋆OMPe
only for those instances.
3.5. Demonstration on a sparse image

To illustrate AMul�A⋆OMPe on a more realistic coeffi-
cient distribution, we demonstrate recovery of some com-
monly used 512� 512 images including ‘Lena’, ‘Tracy’,
‘Cameraman’, etc. The recovery is performed in 8� 8 blocks
in order to break the problem into smaller and simpler
subproblems. Each image is first preprocessed to obtain K-
sparse blocks in the 2D Haar Wavelet basisΨ by keeping the
K largest magnitude wavelet coefficients for each block.9 We
select K¼12 for the image ‘Bridge’, and K¼14 for the rest.
M¼32 observations are taken from each block. The entries of
Φ are randomly drawn from the Gaussian distribution with
mean 0 and standard deviation 1=N. We set I¼3, P¼200 and
Kmax ¼ 20: αAMul is reduced to 0.85 in order to compensate
the decrement in the auxiliary term of (2) due to smaller
Kmax. Peak signal-to-noise ratio (PSNR) values obtained by
employing different recovery algorithms are given in Table 2.
9 This formulation involves the structured dictionary Ψ for sparse
representation of the images. The observation model becomes y¼ΦΨx,
where the reconstruction basis is not Φ alone, but ΦΨ .
For each image, maximum and minimum PSNR values
obtained are shown in bold and in italics, respectively. Mean
PSNR for each algorithm is also given on the last row.
AMul�A⋆OMPe exhibits significant improvements over the
competitors and yields the maximum PSNR for all images
tested. Increasing B from 2 to 3 further improves PSNR,
yielding improvements of 15.7 dB over BP, 15.3 dB over ISD,
17.7 dB over SL0, and 11.7 dB over MMP-DF on the average.
As a visual example, we depict the reconstruction of the test
image ‘Bridge’ using BP and AMul�A⋆OMPe with B¼3 in
Fig. 7. In this case, BP yields 29.9 dB PSNR, while AMul-
A⋆OMPe improves the PSNR to 51.4 dB. Though not depicted
in Fig. 7, AMul�A⋆OMPe outperforms BP with 46.8 dB when
B¼2 as well. A detailed investigation of the recovered
images reveals that AMul�A⋆OMPe improves the recovery
especially at detailed regions and boundaries.

4. Summary

The fundamental goal of this paper is a comprehensive
analysis of sparse recovery using A⋆OMP, with a particular
focus on the novel variant AMul�A⋆OMPe. We have
addressed this issue with emphasis on both theoretical
and practical aspects.

We have presented a theoretical analysis of signal
recovery with A⋆OMP. We have first derived a RIP condi-
tion for the success of an A⋆OMP iteration. Then, we have
generalized this result for the exact recovery of all K-
sparse signals from noise-free measurements both with



Test image AMul−A*OMPe, B=3 (PSNR = 51.4 dB)BP (PSNR = 29.9 dB)

Fig. 7. Recovery of the image ‘Bridge’ using BP and AMul�A⋆OMPe .
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A⋆OMPK , where the termination is based on the sparsity
level K, and with A⋆OMPe, which employs the residue-
based termination criterion. We have observed that both
A⋆OMP variants enjoy similar RIP-based general exact
recovery guarantees. In addition, we have presented online
guarantees for A⋆OMPe, which can be satisfied even when
the general guarantees fail. This has led to the conclusion
that A⋆OMPe is more advantageous for sparse recovery,
since it enjoys some online guarantees in addition to the
general recovery guarantees analogous to those of
A⋆OMPK . This encourages utilizing the residue-based ter-
mination instead of the sparsity-based one for recovery
from noise-free observations.

We have demonstrated AMul�A⋆OMPe in a wide range
of recovery simulations involving sparse signals with differ-
ent characteristics. According to the results, A⋆OMP per-
forms better recovery than all the other candidates for
uniform and Gaussian sparse signals. Among A⋆OMP var-
iants, AMul�A⋆OMPe promises the most accurate recovery
and fastest execution times. For CARS sparse signals,
AMul�A⋆OMPe recovery is still better than the involved
greedy alternatives, however BP is the most accurate algo-
rithm in this case. We have also shown that the search can
be significantly accelerated without sacrificing the accuracy
via a hybrid approach, which first applies OMP, and then
AMul�A⋆OMPe only if OMP fails. Finally, we have employed
AMul�A⋆OMPe on sparse images, where it improves the
recovery significantly over BP.

The AMul cost model with the residue-based termina-
tion has demonstrated strong empirical performance
while also providing more greed due to the allowance
for a larger α. Hence, AMul�A⋆OMPe turns out to be the
most promising A⋆OMP variant in this paper. As future
work, it is worth to investigate different cost model
structures which may improve speed and convergence of
the algorithm in specific problems. For example, the cost
model may be formulated to reflect the expected statistics
of the signal of interest. Such a strategy would be problem-
dependent, however it may guide the algorithm faster
and more accurately to the desired solution. Combining
A⋆OMP with sparsity models, i.e., signals with specific
sparsity patterns, is another promising future work
direction.
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