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Recovery of sparse signals from compressed measurements constitutes an �0 norm minimization problem,
which is unpractical to solve. A number of sparse recovery approaches have appeared in the literature,
including �1 minimization techniques, greedy pursuit algorithms, Bayesian methods and nonconvex
optimization techniques among others. This manuscript introduces a novel two stage greedy approach,
called the Forward–Backward Pursuit (FBP). FBP is an iterative approach where each iteration consists of
consecutive forward and backward stages. The forward step first expands the support estimate by the
forward step size, while the following backward step shrinks it by the backward step size. The forward
step size is larger than the backward step size, hence the initially empty support estimate is expanded
at the end of each iteration. Forward and backward steps are iterated until the residual power of the
observation vector falls below a threshold. This structure of FBP does not necessitate the sparsity level
to be known a priori in contrast to the Subspace Pursuit or Compressive Sampling Matching Pursuit
algorithms. FBP recovery performance is demonstrated via simulations including recovery of random
sparse signals with different nonzero coefficient distributions in noisy and noise-free scenarios in addition
to the recovery of a sparse image.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Despite the conventional acquisition process which captures a
signal as a whole prior to dimensionality reduction via transform
coding, Compressed Sensing (CS) aims at acquisition of sparse or
compressible signals directly in reduced dimensions. Mathemati-
cally, the “compressed” observations are obtained via an observa-
tion matrix �

y = �x, (1)

where x is a K -sparse signal of length N , K is the number of
nonzero elements in x, y is the observation vector of length M ,
and � is an M×N random matrix with K < M < N . Once y is ob-
served, the goal of CS is to recover x, which is analytically ill-posed
following the dimensionality reduction via �. Exploiting the sparse
nature of x, CS reformulates (1) as a sparsity-promoting optimiza-
tion problem

x = arg min‖x‖0 subject to y = �x, (2)

where ‖x‖0, called the �0 norm by abuse of terminology, denotes
the number of nonzero elements in x. As direct solution of (2) is
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computationally intractable, a number of alternative and approx-
imate solutions have emerged in the literature. An overview of
mainstream methods is available in [1], which broadly categorizes
CS algorithms as convex relaxation techniques, greedy pursuits,
Bayesian methods and nonconvex optimization techniques. Theo-
retical exact recovery guarantees have also been developed mainly
under the Restricted Isometry Property (RIP) [2–4] for some of
the algorithms. RIP also provides a basis for understanding what
type of observation matrices should be employed. Random ma-
trices with Gaussian or Bernoulli entries, or matrices randomly
selected from the discrete Fourier transform satisfy RIP with high
probabilities [2,3].

Convex relaxation methods [2,5–9] replace the �0 minimization
in (2) with its closest convex approximation, the �1 minimization.
Following this modification, recovery is tractable via convex opti-
mization algorithms such as linear programming, as proposed by
Basis Pursuit (BP) [8], which is historically the first convex re-
laxation algorithm. Greedy pursuit algorithms, such as Matching
Pursuit (MP) [10], Orthogonal MP (OMP) [11], Compressive Sam-
pling MP (CoSaMP) [12], Subspace Pursuit (SP) [13] and Iterative
Hard Thresholding (IHT) [14,15], employ iterative greedy mech-
anisms. In addition, [16] provides a framework called Two Stage
Thresholding (TST), into which algorithms such as SP and CoSaMP
fall.

The manuscript at hand proposes a two stage iterative greedy
algorithm, called the Forward–Backward Pursuit (FBP). As the name
indicates, FBP employs forward selection and backward removal
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steps which iteratively expand and shrink the support estimate
of x. With this structure, FBP falls into the general category of TST-
type algorithms, while iterative expansion of the support estimate
is investigated for the first time in this concept. Despite their sim-
ilar structures, FBP has a major advantage over SP and CoSaMP:
Since its forward step is larger than the backward one, FBP iter-
atively expands the support estimate, removing the need for an
a priori estimate of K , which is mostly unknown. Additionally, the
backward step of FBP can remove some possibly misplaced indices
from the support estimate, which is an advantage over forward
greedy algorithms such as OMP. In parallel, the simulation results
in this manuscript demonstrate that FBP can perform better than
SP, OMP and BP in most scenarios, which indicates that SP is not
necessarily the globally optimum TST scheme as proposed in [16].

A forward–backward greedy approach for the sparse learning
problem, FoBa, has been investigated in [17]. Though both FoBa
and FBP consist of iterative forward and backward steps, the al-
gorithms have some fundamental differences: FoBa employs strict
forward and backward step sizes of one. On the contrary, the for-
ward step size of FBP is greater than one, while the backward step
size might also be. By increasing the difference between the for-
ward and backward step sizes, FBP terminates in less iterations.
Second, FoBa takes the backward step after a few forward steps
based on an adaptive decision. FBP employs no adaptive criterion
for taking the backward step, which immediately follows each for-
ward step. (Note that using an adaptive criterion is not trivial when
the step sizes are greater than one.) Finally, FoBa has been applied
for the sparse learning problem, while we propose and evaluate
FBP for sparse signal recovery from compressed measurements.

This manuscript is organized as follows: First, we give a brief
overview of greedy pursuit algorithms. The FBP algorithm is intro-
duced in Section 3. Section 4 demonstrates FBP recovery perfor-
mance in comparison to the BP, SP and OMP algorithms via sim-
ulations involving sparse signals with different nonzero coefficient
distributions, phase transitions, noiseless and noisy observations,
and a sparse image. We conclude with a brief summary in Sec-
tion 5. A preliminary version of this work, [18], has been presented
at EUSIPCO’2012.

2. Greedy pursuits

In this section, we summarize OMP, SP and TST, which are
important for our purposes because of their resemblance to the
FBP algorithm. Beforehand, we define the notation that is used
throughout the paper: T k denotes the estimated support of x after
the kth iteration, while T̃ k stands for the expanded support after
the forward selection step of the kth iteration. ỹk is the approxi-
mation of y after the kth iteration and rk is the residue of y after
the kth iteration. �J denotes the matrix consisting of the columns
of � indexed by J , and xJ is the vector of the elements of x in-
dexed by J . Finally, �∗ stands for the conjugate of the matrix �.
Note that each column of � is sometimes referred to as an atom
in the rest.

OMP is a forward greedy algorithm that searches for the sup-
port of x by identifying one element per iteration. It starts with
an empty support estimate: T 0 = ∅ and r0 = y. At the iteration k,
OMP expands T k−1 with the index of the dictionary atom closest
to rk−1, i.e. it selects the index of the largest magnitude entry of
�∗rk−1. Next, ỹk is computed via orthogonal projection of y onto
�T k and the residue is updated as rk = y − ỹk . The iterations are
carried out until the termination criterion is met. In this work, we
stop OMP when ‖rk‖2 � ε‖y‖2 similar to the termination criterion
of FBP.

SP and CoSaMP combine selection of multiple columns per it-
eration with pruning, keeping K -element support sets throughout
the iterations. At iteration k, SP first expands T k−1 with the in-
dices of the K largest magnitude elements of �∗rk−1, obtaining
the extended support T̃ k of size 2K . (Alternatively, CoSaMP ex-
pands T k−1 by 2K elements.) In the second step, the orthogonal
projection coefficients of y onto �T̃ k are computed, and T k is
obtained by pruning the indices of all but the K largest magni-
tude projection coefficients from T̃ k . rk is finally computed using
the approximation ỹk which is obtained by orthogonal projection
of y onto �T k . The iterations are stopped when ‖rk‖2 � ‖rk−1‖2.
CoSaMP and SP are both provided with RIP-based exact recovery
guarantees. On the other hand, they employ equal forward and
backward step sizes, which lead to a fixed support size between
the iterations. This necessitates an a priori estimate of the spar-
sity level K . This is an important handicap in most practical cases,
where K is either unknown or it is not desired to fix it.

Recently, Maleki and Donoho have introduced the TST frame-
work [16], into which algorithms such as SP and CoSaMP fall.
TST algorithms employ a two stage iterative scheme which first
updates the sparse estimate and then prunes it by thresholding.
Next, the optimal coefficients are computed by orthogonal projec-
tion of y onto the pruned support. This is followed by a second
thresholding operation that yields a new sparse estimate. [16] also
presents a tuned SP algorithm, which turns out to be the empiri-
cally optimal TST scheme for sparse signals with constant ampli-
tude nonzero elements. This algorithm employs a tuned support
size which is decided on-the-fly depending on the pre-computed
phase transition curves for the particular M and N values of in-
terest. The motivation behind this tuning is to select the support
estimate at least as large as the largest sparsity level SP can exactly
recover. However, as the results in [16] also indicate, choosing the
support size of SP larger than the actual sparsity level degrades
the recovery performance. Hence, this tuned SP algorithm is sub-
ject to perform worse than the oracle-SP, which incorporates the
actual sparsity level.

3. Forward–backward pursuit

Forward–backward pursuit is an iterative two stage algorithm.
The first stage of FBP is the forward step which expands the sup-
port estimate by α > 1 atoms, where we call α the forward step
size. These α indices are chosen as the indices of the dictionary
atoms which are maximally correlated with the residue, follow-
ing the motivation of obtaining the best match to it. Then, FBP
computes the orthogonal projection of the observed vector onto
the subspace defined by the support estimate. Next, the backward
step prunes the support estimate by removing β < α indices with
smallest contributions to the projection. Similar to α, we refer to β

as the backward step size. The orthogonality of the residue to the
subspace defined by the pruned support estimate is ensured by a
second projection of the residue onto this subspace. These forward
and backward steps are iterated until the energy of the residue ei-
ther vanishes or is less than a threshold which is proportional to
the energy of the observed vector.

3.1. The proposed method

The FBP algorithm can now be outlined as follows: We initial-
ize the support estimate as T 0 = ∅, and the residue as r0 = y.
At iteration k, first the forward step expands T k−1 by indices
of the α largest magnitude elements in �∗rk−1. This builds up
the expanded support set T̃ k . Then the projection coefficients are
computed by the orthogonal projection of y onto �T̃ k . The back-

ward step prunes T̃ k by removing the β indices with the smallest
magnitude projection coefficients. This produces the final support
estimate T k of the kth iteration. Finally, the projection coefficients
w for the vectors in �T k are computed via the orthogonal projec-
tion of y onto �T k , and the residue is updated as rk = y − �T k w.
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The iterations are carried on until ‖rk‖2 < ε‖y‖2. After termination
of the algorithm at the lth iteration, T l gives the support esti-
mate for x, while w contains the corresponding nonzero values.
The pseudo-code of FBP is given in Algorithm 1.

Algorithm 1 FORWARD–BACKWARD PURSUIT

input: �, y
define: α, β , Kmax, ε
initialize: T 0 = ∅, r0 = y, k = 0
while true do

k = k + 1
forward step:

T f = arg max
J : |J |=α

‖�∗
J rk−1‖1

T̃ k = T k−1 ∪ T f

w = arg min
w

‖y − �T̃ k w‖2

backward step:
Tb = arg min

J : |J |=β

‖wJ ‖1

T k = T̃ k − Tb

projection:
w = arg min

w
‖y − �T k w‖2

rk = y − �T k w
termination rule:

if ‖rk‖2 � ε‖y‖2 or |T k| � Kmax then
break

end if
end while
x̃ = 0
x̃T k = w
return x̃

As for the termination parameter ε, we choose a very small
value in practice (10−6 for the experiments below) when the ob-
servations are noise-free. For noisy observations, ε should be se-
lected depending on the noise level. To avoid the algorithm run-
ning for too many iterations in case of a failure, the maximum
size of the support estimate is also limited by Kmax. Note that, the
specific choice of Kmax has no significant effect on the recovery ac-
curacy given it is a bit larger than the underlying sparsity level K
(to assure the correct solution may be found before the support
size reaches Kmax). Since K cannot be known in practice, we may
set Kmax either large enough or simply as Kmax = M . In addition,
the phase transitions of FBP may also be used for obtaining a large
enough estimate for Kmax given N and M in a specific scenario.
That is, given the empirical phase transition curve, Kmax can be
chosen such that it corresponds to a sparsity ratio which lies over
the phase transition curve for the particular M and N values.

An important issue for the performance of FBP is the choice
of the forward and backward step sizes. The forward step size α

should be chosen larger than 1. It is possible to choose α as large
as problem-specific constraints allow, while a reasonable approach
would obviously be selecting it small in comparison to the obser-
vation length M in order to avoid linearly dependent subsets in
the expanded support estimate after the forward step. As for the
backward step, β should be smaller than α by the definition of
FBP, since the support estimate should be enlarged at each itera-
tion. In order to find an empirically optimal rule for choosing α

and β , we present phase transition curves of FBP with various α

and β choices among the simulation results below. It turns out
that choosing α ∈ [0.2M,0.3M] and β = α − 1 leads to the op-
timal recovery performance in practice, whereas the algorithm is
also quite robust to other choices of α and β as well. In par-
ticular, choosing β < α − 1 speeds up the algorithm without a
severe decrement in the recovery accuracy as demonstrated be-
low.
3.2. Relations to other greedy algorithms

Forward greedy algorithms, such as OMP and other MP vari-
ants, which enlarge the support estimate iteratively via forward
selection steps, have a fundamental drawback by definition: Since
they possess no backward removal mechanism, any index that is
inserted into the support estimate cannot be removed. That one
or more incorrect elements remain in the support until termina-
tion may cause the recovery to fail. FBP, on the contrary, employs
a backward step, which provides means for removal of atoms from
the support estimate. This gives FBP the ability to cover up for
the errors made by the forward step. To illustrate, consider a well-
known example: Let x be the summation of two equal magnitude
sinusoids with very close frequencies, f1 and f2, and � be an over-
complete sinusoidal dictionary, containing atoms with frequencies
f1, f2 and f3 = ( f1 + f2)/2 among others. The first iteration of
OMP selects the component with frequency f3. Then, during the
next iterations, the algorithm tries to cover for this error by choos-
ing components other than the two correct ones and fails. Instead,
assume we run FBP with α = 3 and β = 1. During the forward
step of the first iteration, FBP selects all the three components
with frequencies f1, f2 and f3. Following orthogonal projection,
the backward step will eliminate f3, and the recovery will be suc-
cessful after the first iteration.1

In contrast to SP and CoSaMP, the FBP algorithm does not re-
quire an a priori estimate of the sparsity level K . Unlike the tuned
TST, it does not necessitate a tuning of the support size either. As
explained above, FBP enlarges the support estimate by α − β in-
dices at each iteration until termination of the algorithm, which
depends on the residual power, and not on the sparsity level.
Hence, neither the forward and backward steps nor the termina-
tion criterion require an estimate of the sparsity level. In addition,
the forward and backward step sizes of FBP may be chosen propor-
tional to M with a simple empirical strategy as demonstrated be-
low, while the recovery performance is quite robust to this choice.
These make the FBP algorithm easily applicable in practice in con-
trast to SP and CoSaMP. This, however, comes at a cost: The the-
oretical guarantees cannot be provided in a way similar to SP or
CoSaMP, which make use of the support size being fixed as K af-
ter the backward step. For the time being, we cannot provide a
complete theoretical analysis of FBP, and leave this as future work.
Note that, however, most of the theoretical analysis steps of SP or
CoSaMP also hold for FBP.

4. Experimental evaluation

This section is reserved for the demonstration of the FBP recov-
ery performance in comparison to BP, SP, OMP. For this purpose,
we run recovery simulations involving different nonzero coefficient
distributions, noiseless and noisy observations, and a sparse image.
First, we compare the exact recovery rates, average recovery error
and run times of FBP with those of OMP, SP and BP for signals with
nonzero elements drawn from the Gaussian and uniform distribu-
tions. In order to generalize the results to a wide range of M and
K along with different nonzero element distributions, we provide
the empirical phase transition curves, which are obtained using the
procedure in [16]. Meanwhile, these phase transition curves also
serve for the purpose of investigating optimal α and β choices.
We then demonstrate recovery from noisy observations, and finally
test our proposal on a sparse image to illustrate the recovery per-
formance for a realistic coefficient distribution.

1 Note that the success of FBP in this case depends on the choice of α and β ,
however, this example still illustrates the motivation behind the backward removal
step in a very simple way.
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Fig. 1. Reconstruction results over sparsity for the Gaussian sparse vectors. For FBP, β = α − 1.

Fig. 2. Reconstruction results over sparsity for the Gaussian sparse vectors. For FBP, α = 20.
Results of the 1D simulations are presented as averages over
three different data sets, where the nonzero entries of the test
samples in each set are selected from different random ensem-
bles. The nonzero entries of the Gaussian sparse signals are drawn
from the standard Gaussian distribution. Nonzero elements of the
uniform sparse signals are distributed uniformly in [−1,1], while
the constant amplitude random sign (CARS) sparse signals have
nonzero elements with unit magnitude and random sign. Dur-
ing the experiments, a different observation matrix � is drawn
from the Gaussian distribution with mean 0 and standard devi-
ation 1/N for each test signal. All experiments are performed in
the MATLAB environment. For fair comparison of the run times,
algorithms share similar structures. The tests are run on a modest
laptop with Pentium Dual-Core CPU at 2.3 GHz and 2 GB memory
under Windows 7.

As for the termination parameters, ε = 10−6 in the noise-free
case, while it depends on the signal-to-noise ratio (SNR) under
noisy conditions. Kmax, which is not critical for the recovery per-
formance as discussed in Section 3, is chosen large enough, partic-
ularly either Kmax = M or Kmax > M/2. Note that the same ε and
Kmax are also used for OMP.

4.1. Exact recovery rates and reconstruction error

First, we compare the exact recovery rates, recovery error and
run times of FBP using various α and β values with those of OMP,
SP and BP. In these simulations, the signal and observation sizes
are fixed as N = 256 and M = 100 while K varies in [10,45].
For each K , recovery simulations are repeated over 500 randomly
generated Gaussian and uniform sparse signals. The recovery error
is expressed in terms of Average Normalized Mean-Squared-Error
(ANMSE), which is defined as

ANMSE = 1

500

500∑

i=1

‖xi − x̂i‖2
2

‖xi‖2
2

(3)

where x̂i is the recovery of the ith test vector xi . In addition, we
present the exact recovery rates, which represent the ratio of per-
fectly recovered test samples to the whole test data. The exact
recovery condition is selected as ‖x − x̂‖2 � 10−2‖x‖2 following
[16]. In these tests, we select Kmax = 55 to allow for exact recov-
ery of sparse signals up to about M/2 = 50 nonzero elements. Note
that, for the specific N and M values in this experiment, the phase
transition occurs well below M/2 (see the phase transitions be-
low), hence choosing Kmax > M/2 is sufficient.

Figs. 1 and 2 depict the reconstruction performance of FBP with
various α and β choices for the Gaussian sparse signals in compar-
ison to OMP, BP and SP. Fig. 1 is obtained by varying α in [2,30],
while β = α − 1. That is, the forward step size varies, while the
support estimate is expanded by one element per iteration. For
Fig. 2, α is selected as 20, and β is altered in [13,19], changing
the increment in the support size per iteration for a fixed forward
step size. The run times of the FBP, SP and OMP algorithms are also
compared, while BP is excluded as it is incomparably slower than
the other algorithms. Analogous results are provided in Figs. 3 and
4 for the uniform ensemble as well.

According to Fig. 1, increasing α while keeping the support in-
crement α−β fixed improves the recovery performance of FBP. We
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Fig. 3. Reconstruction results over sparsity for uniform sparse vectors. For FBP, β = α − 1.

Fig. 4. Reconstruction results over sparsity for uniform sparse vectors. For FBP, α = 20.
observe that the exact recovery rates of FBP are significantly bet-
ter than the other candidates for all choices of α, even including
the modest choice α = 2. BP, SP, and OMP start to fail at around
K = 25, where FBP is still perfect for all choices of α. Moreover, for
α � 20, the FBP failures begin only when K > 30. As for ANMSE,
FBP is the best performer when α � 20. With this setting, BP can
beat FBP in ANMSE only when K > 40. In addition, FBP yields bet-
ter recovery rates than OMP and SP for all choices of α.

In Fig. 2, we observe that increasing β for a fixed α improves
the recovery performance. In this case, the exact recovery rate
of FBP significantly increases with the backward step size, while
ANMSE remains mostly unaltered. This indicates that when β is
increased, nonzero elements with smaller magnitudes, which do
not significantly change the recovery error, can be more precisely
recovered. In comparison to the other algorithms involved in the
simulation, FBP is the best performer for β > 15. Similar to the
previous test case, BP can produce lower ANMSE than FBP only for
K > 40.

Investigating Figs. 3 and 4, which depict recovery results for the
uniform sparse signals, we observe a similar behavior as well. FBP
yields better exact recovery rates than the other algorithms when
α and β are large enough, i.e. α � 5 in Fig. 3, and β � 16 in Fig. 4,
while BP can perform better than FBP in terms of the average error
when K > 30.

As for the run times, we expectedly observe that increasing α
or β slows down FBP. This is due to the decrease in the increment
of the support size per iteration, which increases the number of
iterations and the number of required orthogonal projection op-
erations. Moreover, the dimensions of the orthogonal projection
operations also increase with the forward step size. On the other
hand, increasing α − β decreases the number of necessary itera-
tions, as a result of which FBP terminates faster. More important,
the run time of FBP, SP and OMP are very close when α = 20 and
β � α − 2. In case α = 20 and β = 17, the speed of FBP and OMP
are almost the same, whereas the exact recovery rate of FBP is sig-
nificantly better than the other algorithms involved. Note that the
speed of FBP can be improved by removing the orthogonal projec-
tion after the backward step, at the expense of a slight degradation
in the recovery performance.

4.2. Phase transitions

Phase transitions are important for empirical evaluation of CS
recovery algorithms over a wide range of the sparsity level and the
observation length. Below, we present the empirical phase transi-
tion curves of the FBP algorithm in comparison to those of the
OMP, SP, and BP algorithms. These graphs are obtained from re-
covery simulations involving 200 Gaussian, uniform or CARS sparse
signals each. Below, we first depict phase transitions of FBP with
different α and β choices in order to investigate the optimality
of these over the observation length. These simulations provide us
an empirical strategy about how to choose the FBP step sizes in
relation to M . Next, we compare FBP with two different settings
to BP, OMP and SP for the three test sets. In this test set, we set
Kmax = M . This choice is reasonable here, since we are interesting
in recovering signals with a very wide K/M range.

To explain how we obtain the phase transitions, let us first
define normalized measures for the observation length and the
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sparsity level: λ = M/N and ρ = K/M . To obtain the phase tran-
sition curves, we keep the signal length fixed at N = 250, and
alter M and K to sample the {λ,ρ} space for λ ∈ [0.1,0.9] and
ρ ∈ (0,1]. For each {λ,ρ} tuple, we randomly generate 200 sparse
instances and run FBP, OMP, BP and SP algorithms for recovery.
The exact recovery condition being ‖x − x̂‖2 � 10−2‖x‖2 as before,
exact recovery rate is obtained for each {λ,ρ} tuple and each algo-
rithm. The phase transitions are then obtained using the methodol-
ogy described in [16]. That is, for each λ, we employ a generalized
linear model with logistic link to describe the exact recovery curve
over ρ , and then find the ρ value which yields 50% exact recovery
probability.

Phase transitions provide us important means for finding an
empirical way of choosing α and β optimally. As discussed in [16],
the phase transition curve is mostly a function of λ. That is, it
remains unaltered when N changes. Moreover, the transition re-
gion turns out to be narrower with increasing N . These claims
are also supported by some other publications in the literature
[19–22]. Hence, in order to find an optimal set of step sizes for
FBP, we need to have a look at the phase transitions using different
α and β parameters. For a better understanding of their optimal-
ity, α and β should not be fixed but be proportional to M . Trying
to find fixed α and β values is subject to fail mainly for very low
or very high λ values. In other words, it would not be possible to
find a fixed optimal set {α,β} for the whole λ range even when
we fix N . This is, however, possible when α is proportional to M ,
and β is related to the chosen α value. In order to find an opti-
mal choice, we run two distinct sets of simulations: First, we vary
α in [0.1M, 0.4M], whereas β = α − 1. Then we fix α = 0.2M , and
select β either in [0.7α, 0.9α] or as α − 1.

The phase transitions obtained by the procedure described
above are depicted in Fig. 5 for the Gaussian, uniform, and bi-
nary sparse signals. These graphs indicate that the performance of
FBP fundamentally improves with α and β , except for very high α
choices. Another exception is the recovery of CARS sparse signals,
which constitute the hardest problem for this type of algorithms
[16,13]. For this case, the gain with α is not significant, while the
phase transitions remain unaltered when β changes. Another im-
portant observation that can be deduced from these results is that
the performance of FBP is quite robust to the choice of forward
and backward step size choices.

Concentrating on the forward step, the graphs on the left side
of Fig. 5 reveal that the phase transitions are slightly improved
with α until α = 0.3M for the uniform and Gaussian sparse sig-
nals. Choosing α = 0.4M , in contrast, improves the phase transi-
tions only for the mid-λ region, while the results get worse es-
pecially for the high λ values.2 The reason for this degradation is
that the size of the expanded support estimate exceeds M after
the forward step for large K and α values, which leads to an ill-
posed orthogonal projection problem, and causes the recovery to
fail. According to Fig. 5, α = 0.3M is reasonable for a globally opti-
mum FBP recovery accuracy, while this value might be increased if
the problem lies in the mid-λ region. On the other hand, taking
into account the computational complexity, we observe no sig-
nificant decrement in the recovery performance when α = 0.2M .
Hence, we select α = 0.2M below for faster termination, and show
that even this choice already leads to better phase transitions than
OMP, BP, and SP for the Gaussian and uniform sparse signals.3

As for the backward step, the recovery accuracy decreases
slightly with β for the Gaussian and uniform sparse signals.

2 We do not increase α over 0.4M , however note that doing so would even fur-
ther narrow the mid-λ range where the recovery is slightly improved, and widen
the high λ region where the performance is degraded.

3 In fact, the α values evaluated in the previous section do also cover a wide
range including the detailed investigation of the choice of β for α = 0.2M = 20.
Though this degradation increases slightly with λ, we observe that
the recovery performance of FBP is quite robust to the choice of
the backward step size in addition to the forward step size. Re-
member that the β/α ratio commands the increment in the sup-
port size per FBP iteration, and reducing this ratio accelerates the
recovery process. Therefore, these results reveal that it is possi-
ble to reduce the complexity of FBP by decreasing β/α. The phase
transition comparison below states that the phase transition curves
of FBP are still better than those of the BP, SP, and OMP algo-
rithms for the recovery of uniform and Gaussian sparse signals
with reduced β/α rates. Similarly, recovery results from the pre-
vious section also reveal that FBP does not only provide better
recovery rates than the other candidates, but is also as fast as
them with α = 20 and β = 17, which corresponds to α = 0.2M
and β = 0.85α.

Fig. 6 compares the phase transition curve of FBP to those of
OMP, BP and SP for the Gaussian, uniform and CARS sparse signals,
where FBP is run with both α = 0.2M , β = α − 1 and α = 0.2M ,
β = 0.8α. For the Gaussian and uniform distributions, FBP outper-
forms the other algorithms, while for the CARS case BP is better
than FBP and the other greedy algorithms. As a consequence of its
strong theoretical guarantees and convex structure, the phase tran-
sition of BP is robust to the coefficient distribution. On the other
hand, the performances of the greedy candidates SP, FBP and OMP
degrade for the CARS case, while the FBP and OMP curves show
the highest variation among different distributions. We observe
that when the nonzero values cover a wide range, as for the Gaus-
sian distribution, the performances of FBP and OMP are boosted.
In contrast, nonzero values of equal magnitudes are the most chal-
lenging case for these algorithms. This is related to the involved
correlation-maximization step, i.e. choosing the largest magnitude
elements of �∗rk−1, which becomes more prone to errors when
the nonzero elements of the underlying sparse signals span a nar-
rower range [23].

4.3. Recovery from noisy observations

Next, we simulate recovery of sparse signals from noisy ob-
servations y = �x + n, which are obtained by contamination of
white Gaussian noise component n at SNR values varying from 5
to 40 dB. Based on our conclusions from above, FBP is run with
both α = 20, β = 19 and α = 20, β = 17, which correspond to
α = 0.2M , β = α − 1 and α = 0.2M , β = 0.85α, respectively. ε is
selected with respect to the noise level, such that the remaining
residual power is equal to the noise power. The simulation is re-
peated for 500 Gaussian and 500 uniform sparse signals, where
N = 256 and M = 100. The sparsity levels are selected as K = 30
and K = 25 for the Gaussian and uniform sparse signals, respec-
tively. Kmax is 55 as in the first set of simulations. Fig. 7 depicts the
recovery error for the noisy Gaussian and uniform sparse signals,
while the run times are compared in Fig. 8. Note that we express
the recovery error in the decibel (dB) scale, calling it the distortion
ratio, in order to make it better comparable with SNR. Clearly, FBP
yields the most accurate recovery for both β values, while BP can
do slightly better than FBP only when SNR is 5 dB.4 In addition,
we observe that reducing β does not significantly change the re-
covery performance. The run times reveal that FBP is not only the
most accurate algorithm in this example, but is also as fast as OMP
with α = 20 and β = 17. As above, this result also supports that
β can be reduced for speeding up the recovery process without a
significant decrement in the recovery accuracy.

4 Note that all algorithms almost completely fail at these very low SNR values.



N.B. Karahanoglu, H. Erdogan / Digital Signal Processing 23 (2013) 1539–1548 1545
Fig. 5. Phase transition of FBP with different forward and backward step sizes for the Gaussian, uniform and CARS sparse signals.
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Fig. 6. Phase transitions of FBP, BP, SP and OMP for the Gaussian, uniform and CARS sparse signals.

Fig. 7. Average recovery distortion over SNR in case of noise contaminated observations. For FBP, α = 20 and β = 17. K = 30 and K = 25 for the Gaussian and uniform sparse
signals, respectively.

Fig. 8. Average run time per test sample in case of noise contaminated observations. For FBP, α = 20 and β = 17. K = 30 and K = 25 for the Gaussian and uniform sparse
signals, respectively.
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Fig. 9. Recovery of the image “bridge” using BP and FBP. BP recovery yields 29.9 dB PSNR, while FBP provides 31.5 dB PSNR for α = 10, β = 7 and 32.5 dB PSNR for α = 10,
β = 9.
4.4. Demonstration on a sparse image

In order to evaluate the FBP recovery performance in a more
realistic case, we demonstrate recovery of the 512 × 512 image
“bridge”. The recovery is performed using 8 × 8 blocks. The aim
for such processing is breaking the recovery problem into a num-
ber of smaller, and hence simpler, problems. The image “bridge”
is first preprocessed such that each 8 × 8 block is K -sparse in the
2D Haar Wavelet basis, � , where K = 12, i.e. for each block only
the K = 12 largest magnitude wavelet coefficients are kept. Note
that, in this case the signal is not itself sparse, but has a sparse
representation in a basis � . Hence, the reconstruction dictionary
becomes the holographic basis V = �� . From each block, M = 32
observations are taken, where the entries of � are randomly drawn
from the Gaussian distribution with mean 0 and standard devia-
tion 1/N . The parameters are selected as Kmax = 20 and ε = 10−6.
Two sets of FBP parameters are tested, α = 10, β = 7 and α = 10,
β = 9. These selections correspond to α = 0.3M , β = α − 1 and
α = 0.3M , β = 0.7α.5

Fig. 9 shows the preprocessed image “bridge” on the upper left.
On the upper right is the BP recovery. FBP recovery with α = 10,
β = 7 can be found on lower left, and FBP recovery with α = 10,
β = 9 is next to it. In this example, BP provides a Peak Signal-to-
Noise Ratio (PSNR) value of 29.9 dB, while the much simpler FBP
improves the recovery PSNR up to 32.5 dB. A careful investigation
of the recovered images shows that FBP is able to improve the
recovery at detailed regions and boundaries. This example demon-
strates that the simpler FBP algorithm is able to perform more

5 Since M is small in this case, there is no significant run time difference between
choosing α = 0.2M and α = 0.3M . Therefore, we demonstrate FBP with α = 0.3M .
Note that the recovery PSNR that can be obtained with α = 0.2M is about 31.5 dB,
which is also better than the PSNR value BP yields.
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accurate and faster recovery of a signal with realistic nonzero co-
efficient distribution than the much more sophisticated �1 norm
minimization approach.

5. Summary

This manuscript proposes the forward–backward pursuit algo-
rithm for CS recovery of sparse signals. Falling into the category
of TST algorithms, FBP employs a forward step which enlarges the
support estimate by α atoms, while the backward step removes
β < α atoms from it. Hence, this two stage scheme iteratively ex-
pands the support estimate for the sparse signal, without requiring
K a priori, as SP or CoSaMP do.

The presented recovery simulations demonstrate that FBP can
provide better exact recovery rates and phase transitions than
OMP, SP, and BP except for sparse signals with constant amplitude
nonzeros, i.e. CARS ensemble. FBP performance gets better when
the magnitudes of the nonzero elements start spanning a wider
range, as for the Gaussian distribution. Moreover, FBP is shown to
provide a more accurate recovery of a sparse image than the BP
algorithm. Noisy recovery examples state that FBP provides less
recovery distortion than OMP, BP and SP for the Gaussian and uni-
form sparse signals when SNR is greater than 10 dB. In addition,
investigation of the recovery performance with different α and β

values not only indicates α ∈ [0.2M,0.3M] and β = α − 1 as a rea-
sonable choice, but also states that shorter forward or backward
steps may be incorporated in order to speed up the algorithm with
a slight sacrifice of the recovery performance.

Finally, in order to avoid any misinterpretation, we would like
to note that our findings do not contradict with the results of
Maleki and Donoho in [16], which mainly investigates the CARS
ensemble. Considering the CARS case only, our findings are paral-
lel to [16], i.e. SP is the best performer in this worst-case scenario
for the greedy algorithms. However, our results also indicate that
FBP provides better recovery than SP and BP when the magni-
tudes of nonzero elements are not comparable. This indicates that
SP is not the optimum TST scheme for all nonzero element dis-
tributions. Moreover, we believe that only a small portion of the
real world problems can be represented with constant amplitude
sparse signals. In addition, for most of the problems, it is already
known if the signals of interest have comparable magnitudes or
not. Accordingly, the performance of algorithms for other distribu-
tions should be given more credit. Consequently, we conclude that
FBP is a promising algorithm for signal recovery from compressed
measurements.
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