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PROBLEM
• Goal: Separate speech signal from background noise

given a single channel recording of both

• Assumption: available training data with ground truths
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• In the time domain y(τ) = s(τ) + n(τ)

• In the STFT domain: yt,f = st,f + nt,f

• Often used approximation: |yt,f | ≈ |st,f |+ |nt,f |

• Problem: Given mixed STFT y and given training data,
find an estimate of speech STFT and use it
to reconstruct speech signal in the time domain.

NEURAL NET WITH MASK PREDICTION

• Direct magnitude prediction
ŝW (y) versus mask or
adaptive filter prediction
âW (y)

• For mask prediction, obtain
speech estimate by
ŝ(y) = âW (y)y
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Predicting masks may be better since

• Logistic sigmoid outputs have a suitable range [0, 1]

• Easier to learn for the network since the mask is slowly changing

• No global variance issues in the predictions

• Pass through input directly when no noise

IDEAL MASKS

target mask/filter formula optimality principle
IBM: aibm = δ(|s| > |n|), max SNR given a ∈ {0, 1}

IRM: airm =
|s|

|s|+ |n|
, max SNR given θs = θn

“Wiener like”: awf =
|s|2

|s|2 + |n|2
, max SNR, expected power

ideal amplitude: aiaf = |s|
/
|y|, exact |ŝ|, max SNR θs = θy

phase-sensitive: apsf =
|s|
|y|

cos(θ), max SNR given a ∈ R

ideal complex: aicf = s
/
y, max SNR given a ∈ C

IDEAL MASKS IN COMPLEX DOMAIN
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WHAT KIND OF NEURAL NETWORK?
• Long short-term memory (LSTM) recurrent networks were

shown to be better than DNNs for this problem [1]

• The best performing input features are log-mel-filterbank
energies with 100 mel filters (mfb) [1]

• We show that bidirectional LSTM (BLSTM) works better than
unidirectional LSTM

USING ASR INFORMATION
• BLSTM neural network is only trained on acoustic data and

does not directly use language model information for the
target speech for long term context

• How to provide this information to the neural network?

• Use ASR alignment features as additional inputs to the network

• Obtain an alignment of HMM states to the one-best decoding of
an ASR system

• How to encode the alignment features?

– One-hot state-alignment vector

– Average/power-mean features corresponding to the
aligned state in training data

IDEAL MASKS CHIME-2 DEV SET SDR (IN DB)

dt -6 dB 9 dB Avg
IBM 14.56 20.89 17.59
IRM 14.13 20.69 17.29

“Wiener-like” 15.20 21.49 18.21
ideal amplitude 13.97 21.35 17.52

phase sensitive filter 17.74 24.09 20.76
truncated PSF 16.13 22.49 19.17

PHASE-SENSITIVE APPROXIMATION LOSS
Loss function for training the network:

L(W ) =
∑
t,f

D(ât,f )

Distortion measures:

• Mask approximation (MA): Dma(â) = |â− a∗|2

• Magnitude spectrum approximation (MSA):Dmsa(â) = (â|y|−|s|)2

• Phase-sensitive spectrum approximation (PSA):Dpsa(â) = |ây−s|2

• PSA is equivalent to: Dpsa(â) = (â|y| − |s| cos(θ))2

EXPERIMENTAL SETUP
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• Apply speech separation methods for speech enhancement of
CHiME-2 data

• 2-layer (B)LSTMs followed by one feedforward layer and
sigmoid nonlinearity

• Training: Input Gaussian noise, backprop, stochastic gradient,
init from earlier net if possible

• First train with MA objective to predict a mel-mask, then add
one more layer to expand to full fft spectrum and train with the
MSA/PSA objective

• Evaluate using SDR/SIR on CHiME-2 dev and eval sets

LSTM CELL

CHIME-2 DEV SET SDR (IN DB)
Network Loss Input -6 dB 9 dB Avg
LSTM 2x256 MA mfb 8.77 16.71 12.76
BLSTM 2x256 MA mfb 8.92 16.83 12.90
BLSTM 2x384 MA mfb 9.39 16.97 13.19
LSTM 2x256 MSA mfb 9.24 16.93 13.03
BLSTM 2x384 MSA mfb 9.76 17.28 13.45
LSTM 2x256 PSA mfb 9.71 17.09 13.36
BLSTM 2x384 PSA mfb 10.21 17.43 13.76
LSTM 2x256 MSA mfb+align-avg 9.64 17.92 13.36
LSTM 2x256 MSA mfb+align-pm 9.59 17.15 13.33
BLSTM 2x384 PSA mfb+align-avg 10.50 17.56 13.97

CHIME-2 EVAL SET SDR/SIR (IN DB)
Network Loss Input Avg-SDR Avg-SIR
LSTM 2x256 MSA mfb 13.83 17.53
BLSTM 2x384 MSA mfb 14.22 18.24
LSTM 2x256 PSA mfb 14.14 19.20
BLSTM 2x384 PSA mfb 14.51 19.78
BLSTM 2x384 PSA mfb+align-avg 14.75 20.46

CHIME-2 DEV/EVAL SETS WER - NEW [2]
WER (dev) WER (eval)

Avg Input SNR [dB] Avg
Enhancement -6 9
None 29.39 40.31 13.86 23.41
NMF-MSA 28.38 37.57 12.63 22.02
LSTM-MSA 23.99 30.92 11.68 18.63
LSTM-PSA 23.72 30.90 11.34 18.31
BLSTM-PSA 22.87 29.20 11.26 17.74
BLSTM+align+PSA 21.54 28.04 10.97 16.58

• State-of-the-art sequence-discriminatively trained DNN-HMM
hybrid ASR system, 15.1 hr train, 4.6 hr dev, 4 hr test

• Speech enhancement reduces WER about 7% absolute
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CONCLUSIONS AND FUTURE WORK
• Improved speech enhancement results by:

– bidirectionality of the recurrent network

– phase-sensitive spectrum approximation

– incorporating speech recognition alignment information
within the LSTM-DRNN framework

• Future work may be: prediction of the target phase, phase
consistency, preserve uncertainty in speech estimates, tighter
integration of language model information


