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Abstract

In this paper, we present methods to improve speech
recognition performance of the IBM DARPA Communicator
system. Our efforts for acoustic modeling include training
a domain specific yet broad acoustic model, speaker cluster-
ing and speaker adaptation using feature space transforms.
For language modeling, we achieved improvements by using
compound words, carefully designed LM classes and adjust-
ing the within class probabilities, using NLU state informa-
tion to enhance the language model and building a language
model with embedded grammar objects. Our efforts pro-
duced a relative error rate reduction of 34.6% on the test set
that consists of 1173 utterances that IBM received during
the NIST evaluation of the DARPA Communicator systems
in June 2000. We also tested our decoding on the data from
some other sites to further demonstrate the robustness of the
system improvements.

1. Introduction

The DARPA Communicator project describes a hub-and-
spoke architecture for the design and development of natu-
ral language understanding systems. The system combines
speech recognition, natural language understanding, dialog
management, database access, language generation and speech
synthesis to perform the desired task, which at present can
be described as an automated travel agent that helps callers
make airline reservations. The basic architecture of IBM’s
DARPA Communicator system is described in [1].

In this paper, we report our progress on the speech recog-
nition portion of the IBM communicator system. Our work
can be divided into two major areas, acoustic modeling and
language modeling.

In the acoustic model area, we (1) used a new in-domain
speech database and combined this with some general pur-
pose data and re-trained the system; (2) used speaker clus-
tering algorithms to further reduce the recognition error rate;
(3) also used feature space MLLR transformations to con-
duct unsupervised speaker adaptation. These techniques
have generated more than 30% relative improvement in re-
ducing recognition error rate. Other new techniques, such
as MMIE training and SAT training are also being experi-
mented. No sizable improvement has been seen yet so far.

In the language model area, we have achieved improve-
ments by (1) using compound words, carefully designing LM
classes and adjusting the within class probabilities; (2) us-
ing NLU state information to enhance the language model;
(3) and building a language model with embedded grammar
objects. The new techniques generated about 15% error re-
duction.

Overall improvements are over 34.6% relative even when
some new algorithms, such as unsupervised speaker adapta-
tion, have not yet been included in a combined.

2. Experimental Setup

Three sources of data are served as test sets. Our main
test set is composed of a subset of the calls that the IBM
Communicator system received during the NIST evaluation
in June 2000 (1173 utterances out of 1262 received). We
refer it as NSTVAL. Data sets comprised of calls received
by other sites which also participated in the same evaluation
are also used in some test conditions. They are referred
as DC1, DC2, DC3, ..., etc. to maintain anonimity. The
third test data source is the two test sets referred as SMALL
and LARGE in [1]. We use them only for baseline system
comparison purpose.

3. Acoustic Modeling

The previous acoustic model (SYS0) reported in [1] was
trained from an in-house general purpose telephony speech
database which has about 600 hours of speech. This data
includes personal names, zip codes, business names as seen
in the yellow pages, street addresses, credit card, telephone
numbers, and mutual fund names, etc. It was collected from
over 20,000 speakers. There are obviously some phonetic
context mismatches between the general purpose training
data and the air travel domain application. A new database
has been collected within the domain of airline travel reser-
vation, which has has about 380 hours of speech and was col-
lected from over 4000 speakers over various telephone lines.

3.1. Baseline Acoustic Model Training

First, we experimented with the best way to combine the
new domain dependent data with the old general purpose
speech corpus to minimize the speech recognition error rate.

The recognition error rates produced by the system (SYS1)
trained from the in-domain data are much lower than the
error rates of SYSO (See Table 1) based on previous ex-
periments. However, we had expected more error reduction
from the in-domain data. We found that the in-domain data
is not rich enough in terms of acoustic context variety as
it only covers about 1000 words. More precisely, the 1000
most frequently used words in the speech corpus covered
99% of the text. This lead us to believe that the decision
tree trained from this new data did not cover a rich variety
of phonetic contexts, some of context cases, for example, city
names which do not appear in the training corpus, may not
be well represented by the training data and the resulting
decision tree.

In order to enlarge the phonetic context coverage of the
decision tree, some portion of general-purpose speech data
was selected to augment the new data. Although ideally one
should pick sentences from generic corpus which introduce
new words or contexts, we only picked a random 250 hours
of speech. One indication of that the phonetic context has
been enriched by including a subset of the general purpose
database is that the number context-dependent phones is
increased to 3000 from 2000 when the same spliting threshold
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system trained from the combined speech corpus is called
SYS2.

SYSO | SYS1 | SYS2
LARGE 18.0% | 15.0% | 14.7%
SMALL 20.3% | 17.0% | 16.2%
NSTVAL | 23.7% | 21.0% | 19.0%

Table 1: Comparison of baseline acoustic models

Table 1 showed recognition error rates obtained from 3
systems. These systems all have about 40,000 Gaussians. It
can be seen from 1 that the system (SYS2) trained from the
combined speech corpus produces a consistent and significant
error reduction across 3 test sets over SYSO and SYS1. So
SYS2 is used as the baseline acoustic model throughout.

The error rates in table 1 may be a little different than
the ones reported in [1] since a different homonym filter in
scoring was used in their results.

3.2. MMIE and SAT Training

Systems SYS0, SYS1 and SYS2 are all trained using maxi-
mum likelihood algorithm, known as Baum-Welsh re-estima-
tion algorithm. An attempt to improve the baseline system
performance is to use the MMIE criterion in estimating the
Gaussian parameters as it has shown significant improve-
ment for other tasks, such as Switchboard [9]. The MMIE
statistics only for a subset of the combined speech corpus
(about half in size) are obtained by the time this paper is
written because of the heavy computation cost. The Gaus-
sian parameters re-estimated using MMIE criterion on this
half data does not generate sizable improvement yet. Exper-
iments on the complete training data set are on-going.

We are also experimenting SAT (Speaker Adaptive Train-
ing) during speaker-independent acoustic model training in
order to reduce the inter-speaker variation. A modified ver-
sion of [2] is implemented as applying a feature space trans-
formation to each speaker to reduce the speaker-specific vari-
ation in the speech signal. The experiments in this area are
still going on and no sizable improvement has been seen yet.

4. Speaker Clustering

From our experience on large vocabulary speech recognition
for wide-band speech, we know that speaker clustering can
help to reduce the covariance of the Gaussian models and
leads to significant recognition error reduction [5]. Another
important experience is that when 2 clusters are used, the
automatic speaker clustering algorithm produces a separa-
tion of speakers according to their gender. The cluster se-
lection algorithm used during testing also selects the cluster
for the testing speaker very accurately matching with the
speaker’s gender. For example, we have found that for a
wide-band test database of 25 speakers, the cluster selection
result completed and correctly matches the speaker’s gen-
der. More importantly, the speech recognition error rate is
always minimized when the right gender model is used for
recognition.

However, the same algorithms did not produce the same
speaker clustering and cluster selection results when apply to
the DARPA Communicator data. When 2 clusters are used,
the automatic speaker clustering algorithm does not produce
a gender separation for speakers in the training database.
Moreover, the automatic cluster selection algorithm does
not always select a cluster for a speaker to minimize the
recognition error rate. Instead, one of the cluster models al-
ways produces the same or less (for some test sets) amount
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model for all the speakers. This phenomenon lead us to be-
lieve that there exist some other unknown conditions in our
telephony database which are stronger than the gender differ-
ences among speakers that are being captured by the speaker
clustering algorithm. We have already checked thoroughly
that these conditions do not correspond to differences among
landline, cellular phone, handset or speaker phone, etc. We
are still experimenting to try to understand what are these
effects.

Table 2 comparied the results between speaker indepen-
dent system SYS2 and a two-clusters system. The super-
scripts on the test set names indicate which language model
is used, as we have had more than one language models. The
superscript 1 represents old LM, and 2 means new LM as de-
scribed in Section 6. The column CLS2.1 and CLS2.2 repre-
sent decoded error rates when each of two cluster models are
used to decode all the speakers’ data. The “auto” column
under CLS2 represents error rates when an automatically
selected cluster model is used for test each speaker. The
“cheat” column under CLS2 showed the error rate if a clus-
ter is manually selected according to the lower error rate for
each speaker. We are not satisfied by the automatic cluster
selection results, because it is not always able to select a clus-
ter that produces the lowest recognition error for a speaker.
We have experimented with several different methods and
different features for cluster selection.

The “rover” column in Table 2 showed the results when 3
decoded scripts generated by SYS2, CLS2.1 and CLS2.2 are
post-processed by a voting program known as ROVER pro-
vided by NIST [3]. ROVER has enhanced speaker clustering
significantly and has consistently produced much lower error
rates than any automatic cluster selection algorithms and in
some cases, it is also better than “cheating” results. Table
3 showed similar results for 4-cluster experiments. We are
trying to implement multiple decoders to generate multiple
decoding scripts for ROVER, for a real-time Communicator
implementation.

In both Table 2 3, the feature vectors used for speaker
clustering are MFCCs, with no CMN applied, as we know
that cepstral mean normalization (CMN) reduces inter-speaker
variability, in addition to eliminating unknown channel trans-
fer functions [6]. We attempt to maintain all variabilities
present. After speakers in training database being decided
which cluster belong to, normal LDA transformed features
are used to trained cluster models.

test set sys2 | cLs21 | cLs2.2 CLS2

auto | cheat | rover
NSTVAL! | 19.0 18.5 20.1 18.1 17.2 16.5
NSTVALZ? | 17.9 17.6 20.0 17.2 17.0 16.1
DC12 26.8 27.1 28.4 - - 24.5
DC22 12.0 12.6 12.4 - - 10.7
D(C32 28.2 27.4 29.8 - - 27.1
DC42 17.0 16.5 17.0 - - 15.5

Table 2: Word error rates in percentages for speaker cluster-
ing experiments: 2 Clusters, MFCCs without CMN

test set SYS2 CLS4
auto cheat rover
NSTVAL' | 19.0% | 18.3% | 15.8% | 16.3%
NSTVAL? | 17.9% | 17.4% | 15.5% | 15.7%
Table 3: Speaker Clustering Experiments: 4 Clusters,

MFCCs without CMN
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in the telephony training data, we have been experiment-
ing using different feature vectors to separate speakers in
the training database. Such features include MFCCs after
CMN (called CMN hereafter), MFCCs after CMN plus delta
MFCCs (called DELTA), and MFCCs after CMN and after
applying LDA transformation (named LDA).

In an effort to produce gender dependent speaker cluster-
ing, we investigated Vocal Tract Length (VTL) Normaliza-
tion algorithm [11]. The frequency warping factor generated
from the VTL algorithm can determine the speaker’s gender
with about 90% accuracy for randomly selected 100 speakers
from the training database for listening experiment.

Unfortunately, none of these different features for sep-
arating speakers resultes speaker clustering system which
produces very different recognition error rate when an au-
tomatically selected cluster is used for decoding, although
some have much lower “cheat” error rate than others. Table
4 shows the 2-cluster systems where training speakers are
separated using with different features.

test set
NSTVAL?

SYS2

17.9

MFCC

17.2

CMN

17.4

DELTA LDA VTL

17.7 | 17.6 | 17.4

Table 4: Word error rates for speaker clustering experiments:
2 Clusters, Various Features

5. Unsupervised Adaptation - Feature Space
MLLR

MLLR [7], as a speaker adaptation algorithm is well known
as one of the key techniques to reduce the recognition error
rate. Normally in MLLR, a linear transform, which maxi-
mizes the likelihood of the acoustic data associated with an
utterance with respect to a word hypothesis, is applied to
Gaussian means and/or covariances. However, in real-time,
on-line telephony applications, such as DARPA Communi-
cator, adaptation on means and/or covariances may require
too much overhead on computation and therefore resulting a
delayed system response to a caller’s query. We use feature
space MLLR [10] which is a dual to the constrained MLLR
[4]. The feature space MLLR transformation is applied to
feature vectors themselves [10].

The word hypothesis used in feature space MLLR is the
decoded script, which include recognition errors, thus the
speaker adaptation is unsupervised.

We experimented three different ways of adaptation. In
the first experiment referred as FMLLRO in Table 5, one
transformation is estimated for each speaker using all the
test utterances from the same speaker and the assocaited
decoded scripts, and then is applied to all utterances of the
same speaker for re-decoding. The transformation is fixed.
This is an ideal condition for recognition performance, but
obviously impractical for real-time applications. The sec-
ond experiment (FMLLRI1) is to re-estimate the speaker’s
feature space transform every time a new utterance is de-
coded and then to re-decode the same utterance after the
updated transformation is applied to the utterance. In the
third experiment (FMLLR2), the speaker’s transformation
is also re-estimated every time an utterance is decoded, but
the updated transformation is only applied to the next ut-
terance received. No re-decoding of the same utterance is
involved. The third senerio is very close to most real-time
application conditions where the system response time is an
important issue.

Table 5 showed progress made by the unsupervised adap-
tation. Even when no re-decoding is invloved, we still see

| | e g S S
| NSTVAL' | 19.0% | 15.8%

Table 5: Feature Space MLLR adaptation

substantial error reduction. It is useful and will be used
with speaker cluster algorithm together to achieve more im-
provement.

6. Language Modeling

We improved the language model for DARPA communicator
using various techniques as detailed below.

6.1. Compound Words and LM classes

Automatically generated compound words did not improve
recognition rate as reported previously [1]. The most im-
portant information for the system is city names, dates and
times. Confusibility between city names is a big source of
error. Most of the time, when a caller calls the system, they
say the city and state together one after the other, such as
“LOS ANGELES CALIFORNIA”. For common cities, the
LM training data covers them and the LM score for the
state following the city name is high. But, the training data
is limited such that only a small portion of city names ap-
pear in it. To increase coverage of the language model, cities
and states can be grouped into LM classes, say class [city]
and class [state]. However, this causes a problem for word
sequences in the form [city] [state], since due to lumping all
cities and all states together in LM classes, any state can fol-
low any city name with equal (or close) probability, causing
recognition errors such as “SIOUX_CITY OHIO” instead of
“SIOUX_CITY IOWA”. To fix this problem, we formed com-
pound words of the form “city_state” and put them in an LM
class [city_state]. We did the same process for cities and air-
ports and formed a [city-airport] class which contained word
sequences like “NEW_YORK_LA_GUARDIA” and such.
Furthermore, we experimented with more compound words

and LM classes that are appropriate for this system. Cur-
rently, we have 42 LM classes in our system with uniform or
non-uniform within class probabilities. However, the biggest
improvement was observed due to the [city_state] compound
words and classes. The reduction in error rate is observed
when we interpolate the compound word LM with a no-
compound-word trigram LM with equal weighting between
the two.

6.2. NLU State Feedback for Language Modeling

The dialog manager in the system can provide feedback to
the recognizer about the state of the dialog. This information
is useful, because it can be used to help in modeling the
language of the user’s response. For example, if the dialog
manager is asking about a target destination, it is strongly
expected that a city name will be in the response. Similarly,
if a question about the departure time is being presented, the
response most likely will contain time information. To use
this information, we built language models specific to each
state and interpolated these language models with the base
LM to obtain an LM for each state. This is done since we do
not have enough data for each state to train a separate LM
and the answers do not have to comply with the questions
all the time since this is an open dialog system. NLU state
feedback for language modeling improves recognition rate
about 10% relative.

It should be noted that, since our training data for each
state was limited, it is better to use a bigram language model
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if enough data can be obtained for each state, a trigram LM
can be trained.

6.3. Embedded grammar objects

The IBM DARPA communicator is a free-form dialog sys-
tem, so direct application of grammars is not appropriate.
However, within the utterances, there are well structured
portions such as the parts that are describing the date, time
and places. The IBM telephony engine has the recently
added capability of using embedded grammar objects within
the language models [8]. The portions of speech that matches
a grammar are tokenized with a special token and the LM is
trained with the new tokens in place. During decoding, if a
word is hypothesized that occurs in the first position for the
grammar, then the grammar is hypothesized and that path is
scored using the grammar. This scoring is incorporated into
our stack decoder. We formed embedded grammars corre-
sponding to dates, times, cities and “city state” pairs, air-
ports and airlines. Using embedded grammars reduced the
error rate in some test sets, but did not help in all. Embed-
ded grammars are also interpolated with a trigram language
model to observe benefits.

6.4. Experimental Results

Most of the language model improvement came from com-
pound words and design of LM classes. We conducted many
tests with different ways of designing LM classes. There was
also the decision of choosing whether to use uniform within
class LM weights or assign non-uniform weights according to
unigram counts or a combination of both. For example, we
used population and airport volume for the cities to assign
non-uniform weights within the city class.

The baseline language model (“old LM”) was trained us-
ing 90K sentences from the travel domain and is the one used
during the NIST evaluation in June 2000.

We added 10K more sentences to the LM training data,
redesigned the classes and added new classes and compound
words as described in Section 6.1. A few such LM’s were
designed. The best one (“new LM”) is chosen among all.

Table 6 showes the overall progress on acoustic model
and language model. The old AM and the new AM are
SYS0 and SYS2, respectively, as defined in Section 3.1. The
test set NSTVAL is used.

Acoustic Model | Language Model | WER

old AM old LM 23.70%
old AM new LM 20.63%
new AM old LM 19.03%
new AM new LM 17.79%

Table 6: Comparison between old and new, AM and LM.
Overall a big reduction is shown.

The effect of the NLU state feedback and embedded
grammars are shown in table 7. Here, we show the effects
on 3 test sets. Again, the acoustic model used is SYS2.

It is shown that the NLU state feedback reduces the er-
ror rate by about 5-10%. For other sites, the NLU state is
estimated from their system prompts (for testing purposes)
using some rules since the real feedback information was not
available. For the embedded grammar LM result in column
three, no NLU state feedback is used. Embedded grammar
increased error rate for IBM received calls, but reduced error
rate for the other two sites. This could be due to the differ-
ent nature of calls that were received by different sites. Some
sites have a more directed dialogue system that encourages
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ded grammars helped more for the other sites.

Language Model NSTVAL | DC4 DC3

new LM 17.79% 19.70% | 27.74%
NLU state feedback | 16.91% 19.15% | 27.45%
embedded grammars | 19.19% 17.23% | 27.23%

Table 7: Comparison showing LM with NLU state feedback
and embedded grammars. Same acoustic model SYS2 is used
throughout.

7. Conclusions

Our innovative work in acoustic and language modeling re-
duced IBM DARPA Communicator system speech recogni-
tion error rate a substantial amount.

Most of the reduction is obtained by carefully retraining
acoustic and language models using domain specific data and
cleverly increasing the LM coverage using classes. Speaker
clustering is shown to improve the error rate significantly
when combined with ROVER post-processing scheme. The
implementation of feature space adaptation and speaker clus-
tering are still pending.
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