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Abstract. The ordered subsets EM (OSEM) algorithm has enjoyed considerable
interest for emission image reconstruction due to its acceleration of the original EM
algorithm and ease of programming. The transmission EM reconstruction algorithm
converges very slowly and is not used in practice. In this paper, we introduce a
simultaneous update algorithm called separable paraboloidal surrogates (SPS) that
converges much faster than the transmission EM algorithm. Furthermore, unlike the
“convex algorithm” for transmission tomography, the proposed algorithm is monotonic
even with nonzero background counts. We demonstrate that the ordered subsets
principle can also be applied to the new SPS algorithm for transmission tomography to
accelerate “convergence”, albeit with similar sacrifice of global convergence properties
as OSEM. We implemented and evaluated this ordered subsets transmission (OSTR)
algorithm. The results indicate that the OSTR algorithm speeds up the increase in
the objective function by roughly the number of subsets in the early iterates when
compared to the ordinary SPS algorithm. We compute mean square errors and
segmentation errors for different methods and show that OSTR is superior to OSEM
applied to the logarithm of the transmission data. However, penalized-likelihood
reconstructions yield the best quality images among all other methods tested.
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1. Introduction

Attenuation is an important factor that should be corrected for in emission computed

tomography. In modern PET and SPECT systems, transmission scans are performed in

addition to emission scans to correct for the effects of attenuation. Statistical methods

can be used to reconstruct attenuation maps, from which one can calculate attenuation

correction factors (ACFs) to yield quantitatively accurate emission images.

Many algorithms exist for maximum likelihood (ML) and penalized likelihood

(PL) transmission image reconstruction problems. Most of the recent ones (Sauer

and Bouman 1993, Fessler, Ficaro, Clinthorne and Lange 1997) are based on direct

maximization of the objective function rather than on the famous expectation

maximization (EM) algorithm (Lange and Carson 1984) due to the fact that the EM

algorithm for transmission reconstruction converges very slowly (Ollinger 1994).

Recently, ordered subsets EM (OSEM) (Hudson and Larkin 1994) for the emission

problem has been used extensively in emission image reconstruction, primarily because

of the following reasons.

• OSEM provides order-of-magnitude acceleration over EM in ML problems.

• The reconstructed images look good after only a few iterations.

• OSEM is implemented by slightly modifying the well-known EM algorithm.

• OSEM is easily implemented with any type of system model.

Although the images seem to look good, the resolution and variance properties

of OSEM are unclear. In addition it does not converge and may cycle. Due to its

popularity, OSEM has even been applied to transmission data after taking its logarithm.

In the results section, we show that this approach yields lower quality images than the

ordered subsets transmission (OSTR) algorithm that we introduce in this paper.

The ordered subsets principle can be applied to any algorithm which involves

a sum over sinogram indices. The sums over all the sinogram indices are replaced

by sums over a subset of the data and an ordered subsets version of the algorithm

is obtained. However, it seems best to apply this idea to algorithms which update

the parameters simultaneously at each iteration rather than to sequential update

algorithms. Simultaneous update algorithms take smaller steps in the update direction

than sequential update algorithms due to the requirement of a separable surrogate

function which has higher curvature than a nonseparable one. Sequential update

algorithms such as coordinate descent tend to update high frequencies faster (Sauer

and Bouman 1993). When only a subset of the data is used, as in ordered subsets, there

is no point in making high frequency details converge. For the algorithms that use only

a portion of the data at each iteration such as ART, underrelaxation along the update

direction helps the algorithm to converge (Browne and De Pierro 1996).

We introduce a new simultaneous update algorithm called separable paraboloidal

surrogates (SPS) algorithm in this paper. A paraboloidal surrogate (Erdoǧan and Fessler

1998b) is a quadratic function that is designed to lie above the negative log-likelihood.
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Using convexity (Fessler et al. 1997), we get a separable quadratic function that lies

above this paraboloid. Another separable surrogate can be obtained for the penalty part

by using De Pierro’s methods (De Pierro 1993, De Pierro 1995). The global separable

surrogate function can be minimized by a simple simultaneous update.

The SPS algorithm has three advantages as compared to previous simultaneous

update algorithms such as transmission EM algorithm (Lange and Carson 1984) and

Lange’s Convex algorithm (Lange and Fessler 1995) : 1) It requires much less flops

per iteration than the transmission EM algorithm and is comparable to the Convex

algorithm, 2) SPS is derived for the PL problem which is a more general form than

the ML problem, 3) SPS is guaranteed to be monotonic, even with nonzero background

events.

The ordered subsets principle has been applied to other transmission ML

algorithms. Manglos et al (Manglos, Gagne, Krol, Thomas and Narayanaswamy 1995)

applied the ordered subsets idea to the transmission EM method for ML problem.

Although ordered subsets accelerates the original transmission EM algorithm, it still

converges slowly. Nuyts et al (Nuyts, Man, Dupont, Defrise, Suetens and Mortelmans

1998) tested an ordered subsets version of an approximate simultaneous update

algorithm they developed. Their algorithm disregards background counts (such as

random coincidences in PET) and the convergence properties are unknown. Kamphuis

and Beekman (Kamphuis and Beekman 1998) applied the ordered subsets principle to

Lange’s Convex algorithm to accelerate ML transmission image reconstruction, also

ignoring the background counts.

In this paper, we apply the ordered subsets principle to the SPS algorithm for

both ML and PL transmission tomography problems. We show that ordered subsets

accelerates the initial speed of the original SPS algorithm. However, OSTR is not

guaranteed to be monotonic and does not converge to the true optimum for number of

subsets greater than one. Browne and Depierro (Browne and De Pierro 1996) developed

a new algorithm called RAMLA which is similar to OSEM with a relaxation parameter

incorporated to the algorithm. For a certain class of relaxation parameters, they prove

that RAMLA converges to the true ML solution for emission tomography. It might be

possible to obtain a convergent version of OSTR by similar means. However, our results

show that, even without relaxation, the PL images reconstructed with OSTR are very

similar to the ones obtained by convergent algorithms.

In the rest of the paper, we first introduce the problem and the OSTR algorithm

for general penalized-likelihood (PL) objective. Then, we present results on real PET

transmission data with ML and PL reconstructions. We analyze the algorithms in terms

of their mean squared error. We also perform hard segmentation on the reconstructed

images to analyze their tissue classification performance.
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2. The Problem

For transmission scans, it is realistic to assume the following statistical model if the raw

(prompt) measurements {yi} are available:

yi ∼ Poisson{bie
−[Aµ]i + ri}, i = 1, . . . , N, (1)

where N is the number of measured rays, µj is the average linear attenuation coefficient

in voxel j for j = 1, . . . , p, and p denotes the number of voxels. The notation

[Aµ]i =
∑p

j=1 aijµj represents the line integral of the attenuation map µ, and A = {aij}
is the N×p system matrix. We assume that {bi}, {ri} and {aij} are known nonnegative

constants, where ri is the mean number of background events, bi is the blank scan

count and yi represents the number of coincident transmission events counted by the

ith detector pair. Although we adopt PET terminology throughout, the algorithm is

also applicable to SPECT and X-ray CT.

For most PET systems, the delayed coincidences are pre-subtracted from true

(prompt) coincidences by the device hardware in an attempt to remove the background

counts. The subtracted data is no longer Poisson (Fessler 1994, Yavuz and Fessler 1997),

but a difference of two Poisson random variables:

ys
i ∼ Poisson{bie

−[Aµ]i + ri} − Poisson{ri}. (2)

In this case, the model (1) is not accurate. Yavuz and Fessler (Yavuz and Fessler 1997)

showed that an accurate model is achieved by adding a sinogram which is a good estimate

of twice the mean background events (ri’s) to the subtracted data and assuming that

this resultant random vector has the distribution:

ys
i + 2ri ∼ Poisson{bie

−[Aµ]i + 2ri}, i = 1, . . . , N.

This “Shifted Poisson” model matches the mean and variance of the data and yields

more accurate images than the PWLS method (Yavuz and Fessler 1997). For the rest of

the paper, we focus on the model (1). However extension to the Shifted Poisson model

can easily be done by replacing yi by ys
i + 2ri and ri by 2ri.

The negative log-likelihood function for the independent transmission data is:

−L(µ) =
N∑

i=1

hi([Aµ]i), (3)

where hi(l) = bie
−l + ri − yi log (bie

−l + ri), ignoring the constant terms. Directly

minimizing −L(µ) (ML method) results in a very noisy estimate µ̂. Segmentation

of the attenuation map is commonly performed to reduce noise afterwards. Penalized-

likelihood (PL) (or MAP) methods regularize the problem and reduce the noise by

adding a roughness penalty to the objective function as follows:

µ̂ = arg min
µ≥0

Φ(µ), Φ(µ) = −L(µ) + βR(µ).

For simplicity we focus here on a roughness penalty R of this form:

R(µ) =
1

2

p∑

j=1

∑

k∈Nj

wjkψ(µj − µk),
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where Nj represents a neighborhood of voxel j, ψ is a symmetric and convex function

that penalizes neighboring pixel differences. The method easily generalizes to other

forms of penalty functions.

In the following discussion, we use the PL formulation to derive the new algorithm.

Setting β = 0 in the following discussion yields the ML estimator.

3. The SPS Algorithm

In this section, we describe a new simultaneous update algorithm called separable

paraboloidal surrogates (SPS) algorithm.

3.1. The Likelihood Part

3.1.1. Nonseparable Paraboloidal Surrogate We presented the paraboloidal surrogates

algorithm for transmission tomography previously (Erdoǧan and Fessler 1998b, Erdoǧan

and Fessler 1998a). We first find a one-dimensional surrogate parabola qi(l; l
n
i ) that is

tangent to the marginal negative log-likelihood function hi(l) at the current iterate

lni = [Aµn]i and lies above it for all l > 0. Then, we sum up these parabolas like

(3) to obtain an overall (nonseparable) paraboloidal surrogate function for the negative

log-likelihood as follows:

Q1(µ; µn)
4
=

N∑

i=1

qi([Aµ]i ; l
n
i ) ≥ −L(µ), ∀µ ≥ 0,

where

qi(l; l
n
i )

4
= hi(l

n
i ) + ḣi(l

n
i )(l − lni ) +

1

2
ci(l

n
i )(l − lni )2.

The optimum curvature that provides the fastest convergence rate while preserving

monotonicity was shown to be (Erdoǧan and Fessler 1998b)

ci(l
n
i ) =





[
2
hi(0)− hi(l

n
i ) + ḣi(l

n
i )(lni )

(lni )2

]

+

, lni > 0
[
ḧi(0)

]
+

, lni = 0

=





[
(2/(lni )2)

{
bi(1− e−lni )− yi log

bi + ri

ȳn
i

+ lni bie
−lni

(
yi

ȳn
i

− 1

)}]

+

, lni > 0
[
bi

(
1− yiri

(bi + ri)2

)]

+

, lni = 0
,(4)

where ȳn
i = bie

−lni +ri. This surrogate function Q1(µ; µn) and each qi(l; l
n
i ) are naturally

convex. Previously, we used coordinate descent to minimize this function (Erdoǧan

and Fessler 1998b). That approach leads to a very fast and monotonic algorithm.

However, the computational advantages only exist if the system matrix is precomputed

and column accessible (Fessler 1992). For implementations in which the system matrix

is not precomputed (e.g. software that uses projector/backprojector subroutines which

compute the aij on the fly), algorithms that update all the parameters simultaneously
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are preferable since column access to the system matrix is not needed. Moreover,

simultaneous update algorithms parallelize more readily than sequential updates. A

simultaneous update algorithm can be obtained from the above paraboloidal surrogate

by finding another separable surrogate function that lies above it for all possible feasible

parameter values µ. The additive separability of the surrogate

the optimization problem for each parameter, so each parameter µj can be updated

independently from the others. To obtain this separable function we use the convexity

tricks employed in (De Pierro 1993, De Pierro 1995).

3.1.2. Separable Surrogate Lange (Lange and Fessler 1995) applied De Pierro’s ideas

(De Pierro 1993, De Pierro 1995) to transmission tomography to get a separable function

that is tangent to the negative log-likelihood and lies above it everywhere when it is

convex. It can be based on rewriting the sum

[Aµ]i =
p∑

j=1

aijµj =
p∑

j=1

αij

{
aij

αij

(µj − µn
j ) + [Aµn]i

}
, (5)

where
p∑

j=1

αij = 1, ∀i and αij ≥ 0. (6)

Using the convexity of qi, we can show that:

qi([Aµ]i ; l
n
i ) ≤

p∑

j=1

αijqi

(
aij

αij

(µj − µn
j ) + [Aµn]i ; l

n
i

)
. (7)

The form of the right hand side of (7) ensures that the function value and gradient of

the left hand side are equal to those of the right hand side at the current iterate µ = µn.

In other words the curves are tangent at the current iterate. One possible choice for αij

that has been used in (De Pierro 1993, Lange and Fessler 1995) is:

αij =
aijµ

n
j

[Aµn]i
. (8)

We call this choice of αij’s as “multiplicative” form. Using the inequality (7) with these

αij’s, we get a separable surrogate function for Q1(µ; µn) as follows:

QM
2 (µ; µn) =

N∑

i=1

p∑

j=1

αijqi

(
[Aµn]i µj

µn
j

; lni

)
.

This is the separable surrogate obtained using the “multiplicative” form (8), hence we

use M in the superscript.

Another possible set of αij’s is given in (Fessler et al. 1997):

αij =
aij

γi

,

where γi =
∑p

k=1 aik is the projection of an image of all ones. We call this choice the

“additive” form, which results in a separable surrogate as follows:

Q2(µ; µn) =
N∑

i=1

p∑

j=1

aij

γi

qi

(
γi(µj − µn

j ) + [Aµn]i ; l
n
i

)
.
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The function Q2(µ; µn) is separable in j and quadratic, so that the exact minimization

is reduced to minimization of p 1D parabolas each of which depend on one pixel value

µj only.

The separable surrogate obtained from the multiplicative form has some problems

with convergence speed due to the fact that the curvature is inversely proportional to

the current iterate value µn
j :

∂2

∂2µj

QM
2 (µn

j ; µn
j ) =

1

µn
j

N∑

i=1

aij [Aµn]i ci(l
n
i ).

The surrogate parabola becomes infinitely thinner when µn
j gets close to zero and slows

down the convergence for zero regions in the image. The convergence rates of the

two algorithms based on multiplicative and additive forms (PL problem with optimum

curvature (4)) are shown in Figure 1. This figure reveals that the additive form yields

a faster algorithm than the multiplicative form does. Hence, we focus on the additive

form for the rest of the paper.

3.2. The Penalty Part

Section 3.1 derived separable surrogate functions for the log-likelihood function. A

similar separable surrogate is needed for the penalty part R(µ) to obtain a simultaneous

update for the PL objective function. We exploit the convexity of the potential function

ψ(t) to obtain the surrogate. For completeness, we repeat the arguments in (De Pierro

1995, Lange and Fessler 1995):

ψ(µj − µk) = ψ
(

1

2

[
2µj − µn

j − µn
k

]

+
1

2

[
−2µk + µn

j + µn
k

])

≤ ψ̂jk(µ; µn)
4
=

1

2
ψ(2µj − µn

j − µn
k)

+
1

2
ψ(2µk − µn

j − µn
k) (9)

Using this inequality, one gets the following separable surrogate function for the penalty:

S(µ; µn)
4
=

1

2

p∑

j=1

∑

k∈Nj

wjkψ̂jk(µ; µn) ≥ R(µ), ∀µ ∈ IR (10)

One can verify that this surrogate function is tangent to R(µ) at the current iterate and

lies above it for all µ values. Furthermore, the curvature of the surrogate at the current

iterate µn is exactly twice the curvature of the original penalty function.

3.3. The SPS Algorithm

We designed separable surrogate functions for both the likelihood and the penalty parts

in the preceding sections. By combining those, we define the global surrogate function

φ(µ; µn)
4
= Q2(µ; µn) + βS(µ; µn)
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which satisfies φ(µ; µn) ≥ −L(µ) + βR(µ) = Φ(µ), ∀µ ≥ 0, and is tangent to Φ(µ) at

current iterate µn, i.e.

Φ(µn) = φ(µn; µn), ∇Φ(µn) = ∇φ(µn).

We minimize (or decrease) the function φ(µ; µn) at each iteration and repeat the

procedure iteratively,

µn+1 = arg min
µ≥0

φ(µ; µn).

We call this algorithm separable paraboloidal surrogates (SPS) algorithm. One can

show (Erdoǧan and Fessler 1998b) that decreasing the surrogate function φ(µ; µn) also

decreases the original objective function Φ(µ). Hence, this algorithm is intrinsically

monotonic. The minimization of φ(µ; µn) is easy. Due to the additive separability,

the update for each parameter only involves the parameter itself and µn. When a

quadratic penalty is used, i.e. ψ(t) = t2/2 and the nonnegativity constraint is ignored,

the maximization can be done exactly in a single step via Newton’s algorithm as follows:

µn+1 = µn −D−1∇′Φ(µn) (11)

where ∇′Φ(µn) is the column gradient of Φ at µn and D is a p× p diagonal matrix with

diagonal entries

Djj = dn
j + 2β

∑

k

wjk, for j = 1 . . . p.

The factor 2 in the denominator comes from the curvature of the separable surrogate

S(µ; µn) in (10). The denominator terms dn
j are:

dn
j =

N∑

i=1

aijγici(l
n
i ). (12)

For transmission tomography, it is advantageous to use edge-preserving

nonquadratic penalties, such as (Lange 1990):

ψ(t) = δ2 [|t/δ| − log(1 + |t/δ|)] , (13)

where δ > 0 is predetermined. We used this penalty in our PL reconstruction results.

In the nonquadratic penalty case, exact minimization of φ(µ; µn) is not easy, but

one can monotonically decrease the surrogate objective by doing one or more of the

following Newton-Raphson type subiteration(s):

µ̂j :=


µ̂j −

∂
∂µj

φ(µ̂; µn)

dn
j + 2β

∑
k∈Nj

wjkωψ(µ̂j − µn
k)




+

, (14)

where ωψ(t) = ψ̇(t)/t. The detailed explanation of the ωψ(t) function can be found in

(Erdoǧan and Fessler 1998b, Fessler 1997). The partial derivative of the surrogate φ

with respect to µj can be found as:

∂

∂µj

φ(µ̂; µn) =
N∑

i=1

aijḣi(l
n
i ) + dn

j (µ̂j − µn
j ) + β

∑

k∈Nj

wjkψ̇(µ̂j − µn
k), (15)
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where ḣi(l) =
(

yi

bie−l + ri

− 1
)

bie
−l.

Next, we apply the ordered subsets idea to the simultaneous update algorithm

developed above.

3.4. Ordered Subsets

The ordered subsets principle can be used with any algorithm that involves sums over

sinogram indices. The SPS algorithm (14) contains sums over sinogram indices in

computing the denominator dn
j terms (12) and the gradient terms ∂

∂µj
φ (15). We apply

the ordered subsets idea to this algorithm.

Ordered subsets methods group projection data into an ordered sequence of subsets

or blocks and processes each block at once. These blocks are usually chosen so that the

projections within one block correspond to projections of the image with downsampled

projection angles. It was reported (Hudson and Larkin 1994) that it is best to

order the subsets such that the projections corresponding to angles with maximum

angular distance from previously used angles are chosen at each step. This accelerates

convergence as compared to random or sequential ordering of the subsets. This is due

to the fact that the rows of the system matrix corresponding to subsets are chosen to

be as orthogonal as possible to previously used subsets.

Let M be the number of subsets chosen in the projection domain. Let S1, . . . , SM

denote the subsets in the order selected. At step m the following objective function

corresponding to the subset Sm should be minimized (or decreased):

Φm(µ) = M





∑

i∈Sm

hi([Aµ]i)



 + βR(µ). (16)

The scaling of the negative log-likelihood function ensures that effective β value is

independent of the number of subsets. Note that the original objective function can

be written in terms of the objective functions (16) as follows:

Φ(µ) =
M∑

m=1

1

M
Φm(µ). (17)

The success of the ordered subsets methods depends on the following approximation:

Φ(µ) ≈ Φm(µ), (18)

which should be reasonable if the subsets are chosen by subsampling the projection

angles.

One iteration is completed when the algorithm cycles through all the projections by

using all the subsets. An update performed using a single subset is called a subiteration.

The modification of the SPS algorithm to incorporate ordered subsets idea is relatively

easy. We call the resulting algorithm ordered subsets transmission (OSTR) algorithm.

The algorithm outline is shown in Table 1.

The form of the update (22) requires the gradient and curvature associated with

the penalty term to be computed for each subset. Although the contribution of that
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Precompute dj if possible
for each iteration n = 1, . . . , niter

for each subset m=1,. . . ,M

l̂i =
p∑

j=1

aijµ̂j , ḣi =

(
yi

bie−l̂i + ri

− 1

)
bie

−l̂i , ∀i ∈ Sm (19)

µold = µ̂

for j = 1, . . . , p

L̇j = M
∑

i∈Sm

aij ḣi (20)

dj = M
∑

i∈Sm

aijγici(l̂i) (21)

µ̂j :=

[
µ̂j − L̇j + β

∑
k wjkψ̇(µ̂j − µold

k )
dj + 2β

∑
k wjkωψ(µ̂j − µold

k )

]

+

(22)

end
end

end

Table 1. OSTR algorithm outline

computation is only about 4 − 5% in SPS, it might be costly for a large number of

subsets since it is repeated for each subset. Other approaches might be possible such as

to consider the penalty function as one of the subsets and update it separately at the end

of each cycle (De Pierro and Yamagishi 1998). It might also be possible to break down

the penalty term similar to the likelihood part to reduce computation at each iteration.

The choice we made in this paper follows naturally from the approximation (16) of the

PL objective function. Further investigation is required to reduce this computation.

The OSTR algorithm reduces to the SPS algorithm (14) when M = 1. Since the

projections and backprojections are performed for only the elements of a single block,

processing of each block in an OSTR algorithm with M subsets (OSTR-M) roughly

takes 1/M of time that it would take for one iteration of the SPS algorithm for the

ML problem. For PL problem, actually it would take more than 1/M of the time

since the CPU time required for computing the gradient and curvatures of the penalty

surrogate at each full iteration is multiplied by the number of subsets. Yet, one hopes

that processing of one block increases the objective function as much as one iteration

of the original algorithm. That is, the objective increase for M iterations of OSTR-1

should be close to that increase for one full iteration of OSTR-M . This intuition is

verified in the initial iterations and for up to a reasonable number of subsets in the

results section.
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3.5. Precomputed Denominator OSTR

We obtained the OSTR algorithm above from a monotonic simultaneous update

algorithm. However, the monotonicity is destroyed by doing ordered subsets iterations.

So, the algorithm is monotonic only when one subset is used which is equivalent to SPS.

Since the monotonicity is destroyed at the end anyway, we can remove the condition

that the surrogate paraboloid Q1(µ; µn) lie above the original objective function and

obtain a yet faster algorithm (Erdoǧan and Fessler 1998b). Our aim is to precompute

the denominator terms dn
j before iterating and save computation by not updating them.

This “precomputed curvature” idea was introduced in (Fessler et al. 1997, Erdoǧan and

Fessler 1998b) for algorithms that used all the data at once unlike the OS algorithms.

We can generalize this idea to ordered subsets easily. First, we notice that we can replace

the curvature ci(l
n
i ) terms with the Newton curvatures ḧi(l

n
i ) in (21) and obtain a new

algorithm which is no longer guaranteed to be monotonic (even for single subset). We

notice that the second derivative of hi does not change very rapidly and the projections

remain very close to the values l∗i
4
= log

(
bi

yi − ri

)
during the iterations (which is actually

the minimum for hi(l) over l). So, as a second approximation, we replace ḧi(l
n
i ) with

ḧi(l
∗
i ) ‡. The third approximation is to replace M times the sum of the curvatures

ḧi(l
∗
i ) over the subset Sm in (21) with the sum over all sinogram indices {1, . . . , N}.

This is an accurate approximation if the projections l∗i vary slowly with respect to the

projection angle and each subset is chosen by subsampling the projection angles. So,

we can precompute and fix the denominator terms dn
j by:

dn
j = M

∑

i∈Sm

aijγiḧi(l
n
i )

≈ d∗j
4
=

N∑

i=1

aijγiḧi

(
log

(
bi

yi − ri

))
=

N∑

i=1

aijγi
(yi − ri)

2

yi

. (23)

This approximation further reduces CPU time. The minimization step is similar to

(14) but the gradient terms in (20) are computed using just a subset of the data. We

also found that doing more than one subiteration (14) does not improve “convergence”

and costs a lot computationally in the ordered subsets case. So, we only perform one

subiteration to improve “convergence” and CPU time.

The algorithm looks very simple for the ML problem. The updates are done as

follows in ML reconstruction using the fast precomputed denominator:

Precompute and store: d∗j =
∑N

i=1 aijγi(yi − ri)
2/yi, where γi =

∑
j aij

for each subset Compute: l̂i, ḣi as in (19) in Table 1

Update:

‡ l∗i can only be evaluated when yi > ri. Otherwise, hi(l) is a convex function which is monotonically
decreasing as l → ∞. When ri ≥ yi, liml→∞ ḧi(l) = 0, so we replace ḧi(l∗i ) with zero or a very small
number in that case.
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µj :=

[
µj − M

∑
i∈Sm

aijḣi

d∗j

]

+

. (24)

end

This ML-OSTR algorithm is very easy to implement using any kind of system matrix.

Precomputed denominator is applicable to PL problem as well. Figure 1 shows that PL-

OSTR with precomputed denominators converge faster than PL-OSTR with optimum

curvature. We used this precomputed denominator approach for the results presented

next.

4. Phantom Data Results

We acquired a 15-hour blank scan (bi’s) and a 12-min transmission scan data (yi’s)

using a Siemens/CTI ECAT EXACT 921 PET scanner with rotating rod sources for

transmission scans. The phantom used was an anthropomorphic thorax phantom (Data

Spectrum, Chapel Hill, NC). Delayed coincidence sinograms were collected separately in

each scan. The blank and transmission scan delayed-coincidence sinograms were shown

to be numerically close (Yavuz and Fessler 1997), so we used a time-scaled version

of blank scan delayed coincidences as the ri factors with no other processing. The

projection space was 160 radial bins and 192 angles, and the reconstructed images

were 128 × 128 with 4.2 mm pixels. The system matrix aij was computed by using

3.375 mm wide strip integrals with 3.375 mm spacing, which roughly approximates the

system geometry.

4.1. Reconstructions

The attenuation map was reconstructed for both ML and PL methods using OSTR

algorithm with 1, 2, 4, 8, 16 and 32 subsets. In all the reconstructions, precomputed

denominator (23) was used. Figure 2 shows objective function decrease for the ML

reconstructions initialized with a uniform image. The order-of-magnitude acceleration

can be seen by the horizontal dashed lines in this plot for initial iterations. One iteration

of ML-OSTR-16 decreases the objective almost as much as 16 iterations of ML-OSTR-

1 and 4 iterations of ML-OSTR-4 for initial iterations. Although, when M > 1, the

algorithm does not converge to the true ML solution, in practice one would only do

a few iterations using ML-OSTR-M . In the ML problem, exact maximization is not

desired since the ML image is extremely noisy.

Figure 3 shows objective function decrease versus iterations for PL reconstructions

(β = 210 and nonquadratic Lange’s penalty (13)). The iterations are initialized with

an FBP image. There is a speed-up in using more subsets, but as the number of

subsets increase, the order-of-magnitude acceleration does not hold. For example, one

iteration of PL-OSTR-16 decreases the objective more than one iteration of PL-OSTR-

32 (not shown). So, more than 16 subsets did not seem to improve “convergence”
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for this configuration and data. For comparison, the image is also reconstructed with

the optimum curvature paraboloidal surrogates coordinate descent (PL-PSCD) method

which is a fast monotonic algorithm (Erdoǧan and Fessler 1998b). The CPU times for

one iteration of PL-PSCD and one iteration of PL-OSTR-1 are similar. It is clearly

seen that PL-OSTR-M algorithms do not converge to the true minimum when M > 1.

To assure convergence, one could sequentially decrease the number of subsets with each

iteration.

4.2. Mean Squared and Segmentation Errors

The reconstructions were done using real data. We wished to find mean squared errors

and segmentation errors on the reconstructed images. The true image of course was

unknown. We acquired a long 14 hour scan of the thorax phantom which was almost

noise free. We reconstructed the data with FBP with a sharp filter. Then, we performed

a 4 level hard thresholding segmentation on this image with attenuation map parameters

assumed to be average standard attenuation map values for air, soft tissue, lungs and

bone. We obtained regions for each attenuation level. Then, we eroded these regions

with a 5x5 window to get more conservative estimates of the regions and calculated the

average value of the FBP image in these regions. These new values were assumed to be

the true attenuation coefficient levels for the image (air = 0, lungs = 0.035, soft tissue

(water) = 0.093, bone (teflon) = 0.164 cm−1). Then, the FBP image was segmented by

thresholding using new levels to obtain the “true” phantom image shown in Figure 4.

We computed normalized mean squared errors (NMSE) for each reconstruction

method by comparing to the true phantom image in Figure 4. The reconstructed

images were also hard-segmented with the thresholds found above and we evaluated

their segmentation performance by counting the number of misclassified pixels.

We also applied the emission ML-OSEM algorithm to the logarithm of the

transmission data − log {(yi − ri)/bi}. Although there is no theoretical basis for this

approach, it has nevertheless been used by many groups. Our results show that this

approach is inferior to the ML-OSTR method and that it should be avoided.

Figure 5 shows NMSE versus iterations for ML-OSTR, ML-OSEM, PL-OSTR

and PL-PSCD methods. Figure 6 shows the percentage of segmentation errors versus

iterations for the same methods. These results show that ML-OSTR algorithms get

noisy after a certain number of iterations and that the iterations should be stopped

before convergence. For this transmission scan, the ML-OSTR-16 algorithm should be

stopped at the third iteration for lowest NMSE. ML-OSEM applied to the logarithm

of the transmission data is inferior in quality to all other methods we tried, regardless

of number of subsets. PL reconstructions have better quality than ML reconstructions

in terms of both lower mean squared errors and lower segmentation errors. Although

PL-OSTR-16 algorithm does not converge to the minimum of Φ in Figure 3, remarkably

it appears to be comparable to the convergent PL-PSCD algorithm in terms of NMSE

and segmentation performance. In fact, the normalized mean squared difference between
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images reconstructed by PL-PSCD and PL-OSTR-16 is less than 0.015% at iteration 30

of each algorithm.

Figure 7 shows reconstructed images and their segmentations for FBP, ML-OSTR,

ML-OSEM, PL-OSTR and PL-PSCD methods. Each image is the best among their

kind. For example, to obtain the FBP image, we performed 20 different FBPs with

Hanning windows with different cutoff frequencies and picked the one with lowest NMSE.

ML-OSTR image is obtained by 16 subsets at 3 iterations. ML-OSEM image is obtained

by 8 subsets at 2 iterations. PL images are the images at 10th iterations of their

corresponding algorithms. The bars show the levels of NMSE and segmentation errors.

We conclude that PL reconstruction images are much better than the images obtained

using other methods.

5. Patient Data Results

We applied the new OSTR algorithm to patient transmission and FDG emission data

obtained from ECAT EXACT 921 scanner. We reconstructed emission images using

ACFs obtained from the transmission scan. ACFs were computed using two different

methods: 1) conventional (or FBP reconstructed and reprojected) and 2) Nonquadratic

penalty PL-OSTR-16 reconstructions with precomputed denominators and 5 iterations.

Attenuation maps were both post-smoothed axially with the same Gaussian shaped

filter with 5 mm FWHM to reduce noise. Emission reconstructions were done with 1)

FBP and 2) Quadratic penalty PL-SAGE (Fessler and Hero 1994). The resolutions of

the emission images were matched at 6.6 mm FWHM.

There was only a 12 minute transmission scan data available. The transmission

randoms were pre-subtracted, so we used the shifted Poisson model (2) for the data.

The randoms were assumed uniform and the percentage of randoms were estimated

from total delayed counts which was available in the file header. To obtain the 2 minute

transmission data, we thinned the 12 minute transmission data ys
i + 2ri by generating

binomial random variables with parameters n = max{0, ys
i + 2ri} and p = 2/12. Here,

n is an approximately Poisson random variable with mean n̄. This binomial thinning

approach yields a new (approximately) Poisson random variable with a reduced mean

of pn̄. The 2 minute scan randoms level was adjusted to 2 minutes as well. We also used

shifted Poisson model and uniform randoms estimate for the emission data. Scatter and

deadtime effects were ignored.

In Figure 8, we show two emission reconstructions in the top row with ACFs

obtained from 12 minute transmission scan. The image obtained from statistical

method shows some improvement in the image quality over the conventional method.

The bottom four images are emission images obtained from different combinations

of image reconstruction methods with a 2 minute transmission scan. With the 2

minute transmission scan, the improvements in image quality are more apparent for

the statistical method as compared to the conventional method as shown in Figure 8.

These images show that statistical image reconstruction in transmission scans is more
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important than that in emission scans especially for short transmission scan times.

6. Conclusion

We introduced a new ordered subsets algorithm for ML and PL image reconstruction

in transmission tomography. Although the algorithm does not converge for number of

subsets greater than one, it seems to rapidly decrease the objective function value in the

early iterations. The images reconstructed from real PET data with ML method are

worse in quality than images reconstructed with PL method. However, ML-OSTR is

superior to ML-OSEM applied to the logarithm of transmission data for this particular

data. The new algorithm is easy to implement with any type of system model and does

not require column access to the system matrix unlike sequential update algorithms

such as coordinate descent. It is also easily parallelizable.

Kudo et al (Kudo, Nakazawa and Saito 1999) claim that for a general convex

objective function, it is possible to obtain convergent ordered subsets algorithms by using

appropriate relaxation schemes. The general form in (Kudo et al. 1999) includes OSTR

algorithm as a special case. So it might be possible to obtain convergent algorithms by

incorporating a relaxation parameter to the OSTR algorithm.

We conclude that if an approximate minimum is acceptable due to practical time

and programming constraints, then the OSTR algorithm offers faster convergence than

prior methods. However, for guaranteed global convergence to the minimum, other

methods must be used, such as (Erdoǧan and Fessler 1998b).
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Figure 8. FBP (denoted E-FBP) and quadratically penalized PL (denoted E-
PL) emission image reconstructions with attenuation correction factors obtained
using conventional (denoted T-FBP) and nonquadratic penalty PL (denoted T-PL)
attenuation map reconstructions using OSTR algorithm. The top row shows emission
images obtained using ACFs from a 12 minute transmission scan. The bottom two
rows show emission images reconstructed using the ACFs obtained from a 2 minute
transmission scan.


