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Abstract

In modern PET scanners, image reconstruction is
performed sequentially in two steps regardless of the
reconstruction method: 1. Attenuation correction
factor computation (ACF) from transmission scans,
2. Emission image reconstruction using the computed
ACFs. This reconstruction scheme does not use all
the information in the transmission and emission
scans. Post-injection transmission scans contain
emission contamination which includes information
about emission parameters. Conversely emission
scans contain information about the attenuating
medium. To use all the available information, we
propose a joint estimation approach that estimates
the attenuation map and the emission image from
these two scans. The penalized-likelihood objective
function is nonconvex for this problem. We propose
an algorithm based on paraboloidal surrogates
that alternates between emission and attenuation
parameters and is guaranteed to monotonically
decrease the objective function.

I. Introduction

Nowadays, PET scans consist of two separate
scans, namely transmission and emission.
Transmission scans are performed to estimate the
attenuation characteristics of the medium. The
attenuation information gathered from transmission
scans are used to correct for its effects on the
emission data to reconstruct quantitatively accurate
emission images. Conventional method consists of
linear processing (smoothing) of transmission data
to obtain attenuation correction factors (ACFs) and
multiplying the smoothed emission data with these
factors to correct for the effects of attenuation [1].
Statistical penalized-likelihood methods reconstruct
the attenuation map image with a local smoothing
penalty and reproject them to obtain ACFs. These
ACFs are then used in the penalized-likelihood
reconstruction of the emission data by incorporating
them in the emission data statistical model [2]. Both
of these methods employ a sequential approach.
First, ACFs are obtained from transmission scans

and then emission data is reconstructed using the
ACFs.

In this paper, we propose a different approach to
image reconstruction which attempts to utilize all
the information in transmission and emission scans.
Post-injection transmission scans are corrupted
by emission counts, so there is information about
the emission parameters in the transmission scan.
On the other hand, in an emission scan, there is
information about the attenuation properties of the
medium, since the measurements are affected by the
attenuation in the body. Thus, to make optimal
use of the information in these two scans, one can
derive a joint objective function based on both
scans to jointly estimate attenuation and emission
parameters. This approach should yield better
results than the standard sequential estimation
strategy.

II. The Model

Let λ = [λ1, . . . , λp] denote the vector of unknown
emission counts originating from image pixels, and
µ = [µ1, . . . , µp] be the vector of linear attenuation
coefficients (having units of inverse length). Let
yT = [yT1 , . . . , y

T
N ] denote the vector of post-injection

transmission scan counts, and yE = [yE1 , . . . , y
E
N ]

denote the vector of emission scan counts . We
assume that the yTi and yEi are realizations of
statistically independent random variables having
Poisson distributions and with expectations ȳTi and
ȳEi :

ȳTi (λ, µ) = bie
−li(µ) + kipi(λ)e−li(µ) + rTi ,

ȳEi (λ, µ) = pi(λ)e−li(µ) + rEi ,

for i = 1 . . . N , and where

pi(λ) =
∑
j

aijλj and li(µ) =
∑
j

gijµj ,

where aij represent the emission projection geometry
including the detector efficiencies, and gij represent
the tomographic system geometry for attenuation.



Here, bi are the time adjusted blank scan counts, pi
and li are the raw projections of true emission and
attenuation parameters, rTi and rEi are background
counts in their respective scans, ki is the fraction of
emission counts in the transmission scan for each ray
i, and εi’s are the detector efficiencies.

Our final goal is to estimate λ from the
measurements. However, the unknown attenuation
map µ (or the ACFs) has to be estimated to
get an accurate estimate of λ. The goal of any
reconstruction algorithm is to improve the quality of
the reconstructed emission image.

III. Sequential Methods

Conventional PET image reconstruction with
post-injection transmission scans consists of the
following steps [3, 4]. First, scaled emission counts
are subtracted from the transmission scan. Scaling
accounts for deadtime, scan durations, radioactive
decay and rod windowing to estimate the emission
contamination accurately. An attenuation map µ̂
is reconstructed from the subtracted data next.
Finally, attenuation correction factors are formed
and applied to emission sinogram to reconstruct the
emission image λ̂.

Although this subtraction based approach might
give satisfactory results for the brain scans where
attenuation is almost uniform, it is suboptimal for
thorax scans due to nonuniform attenuation. This
method disregards measurement noise statistics,
namely the Poisson nature of the measurement
data. Subtraction further destroys Poisson statistics
of transmission sinogram. This approach harms
the reconstruction most for high attenuation rays,
since the transmission counts are typically lower
for those rays. Subtraction results in negatives in
transmission sinogram which is problematic as well.
Transmission scan data can be smoothed to reduce
noise in expense of reduced spatial resolution and
artifacts in the emission image. Because of the noise
problems, this method might require unreasonably
long transmission scans for whole-body studies.

IV. Joint Estimation

Joint estimation is theoretically more
advantageous as compared to sequential methods
since all the data is used to estimate all the unknown
parameters. In this method, we minimize one joint
objective function to find the optimum values for µ

and λ. We simply concatenate the measurements yE

and yT to form the measurement vector and also λ
and µ to form the parameter vector. Since, emission
and transmission counts are independent from
each other, a joint penalized likelihood objective
function can be written by summing up individual
log-likelihoods and the individual penalty terms.[

λ̂
µ̂

]
= arg min

λ,µ
Φ

([
λ
µ

]
;

[
yE

yT

])
,

Φ

([
λ
µ

]
;

[
yE

yT

])
= ΦT (µ, λ) + ΦE(µ, λ),

where ΦT (µ, λ) and ΦE(µ, λ) are penalized-likelihood
objective functions for transmission and emission
scans respectively:

ΦT (µ, λ) =
N∑
i=1

hTi (li(µ), pi(λ)) + βµRµ(µ)

and

ΦE(µ, λ) =
N∑
i=1

hEi (li(µ), pi(λ)) + βλRλ(λ),

where we view the marginal negative log-likelihood
functions hTi and hEi as a function of the projections
li and pi. The objective function only depends on the
parameters λ and µ through their projections pi and
li :

hTi (li, pi) = ȳTi (li, pi)− yTi log ȳTi (li, pi)

and

hEi (li, pi) = ȳEi (li, pi)− yEi log ȳEi (li, pi).

Note that the mean values of two measurements
ȳEi and ȳTi both contain the emission and attenuation
projections li and pi in them. In general the objective
is nonconvex and the global minimization is hard.

V. Optimization Method

We propose to minimize 1 the objective function
Φ by alternatingly updating the emission and
attenuation images. We make use of the paraboloidal
surrogates [5] idea to obtain an algorithm that
monotonically decreases the objective function
assuring convergence to at least a local minimum.

1Or at least achieve a local minimum.



First we make this observation: Once either λ or µ
is fixed, the form of the functions hTi and hEi are
similar to their counterparts in penalized-likelihood
estimation for the other parameter. We use this
observation to derive the following algorithm.

We describe the algorithm using induction. Initial
attenuation and emission images µ0 and λ0 are found
using the conventional sequential method. Say,
µ = µn and λ = λn are the current estimates of two
parameters obtained after iteration n. We fix the
terms λn at their current value and allow only the
terms µ to change. Our aim is to find:

µn+1 = arg min
µ≥0

ΦE(µ, λn) + ΦT (µ, λn).

We denote the current values of the projections as
pni
4
= pi(λn) and lni

4
= li(µn). The form of the mean

values for both scans when the λ terms are fixed and
assumed constant is:

ȳSi = ASi e
−li +BS

i , for S ∈ {T,E}.

where ASi = ASi (pni ) and BS
i are constants

independent of li. Furthermore ASi > 0 and
BS
i ≥ 0 for both scans. These conditions satisfy

the conditions in Theorem 1 of [5], and we can
find surrogate parabolas qTi (li) and qEi (li) that lie
above hTi (li) and hEi (li) and tangent to them at
the current projection lni . The sum of these two

parabolas qi(li)
4
= qTi (li) + qEi (li) is also a parabola.

Once the curvature and gradient of the parabola is
determined, they can be fed into the paraboloidal
surrogates coordinate descent (PSCD) algorithm to
update the attenuation parameters to obtain the
next iterate µn+1.

Similarly, we next fix the attenuation map values
µn+1 and allow only the λ parameters to change to
minimize the objective function:

λn+1 = arg min
λ≥0

ΦE(µn+1, λ) + ΦT (µn+1, λ).

When the attenuation parameters are fixed, the form
of the means for both scans is as follows:

ȳSi = CSi pi +DS
i , for S ∈ {T,E}. (1)

Here once again CSi = CSi (ln+1
i ) and DS

i are constants
independent of pi. The objective function viewed as
only a function of λ (or pi’s) is convex, and strictly
convex if ySi > 0. Hence, the form of (1) makes it
possible for hEi (pi) and hTi (pi) (viewed as functions

of pi only) to satisfy the conditions of Theorem 1
in [5]. Hence, similar to the attenuation parameter
update, one can obtain parabolas that lie above these
h functions and tangent to them at the current iterate
pni [6]. After the parabolas are obtained, it is easy to
implement a PSCD algorithm similar to [6].

This joint estimation algorithm is easy to
implement and results in a very fast algorithm.
Once the gradient and curvatures of the parabolas
are determined, the problem turns into a penalized
weighted least squares type optimization problem
and the computations of updates become very fast
[5, 6].

VI. Conclusion

We propose a new joint estimation algorithm for
estimating attenuation and emission images from
transmission and emission scans. The method is
based on minimizing a joint objective function that
contains terms from both scans with respect to
attenuation and emission parameters. We use an
alternating optimization scheme where we minimize
one set of parameters at a time fixing the values of
the other set. This results in a fast and efficient
algorithm that guarantees monotonicity. The joint
estimation approach is theoretically more accurate
and uses all the available information to estimate
all the parameters at once unlike current sequential
approaches.

There might be other ways to minimize the
objective function such as sequentially updating
(λ1, µ1), (λ2, µ2), . . . , (λp, µp). This method might
converge faster, but it is harder to implement and
per iteration costs are higher. Our alternating
optimization approach is faster, simpler and easier
to implement.

There are some challenges in using this method for
PET image reconstructions. If random coincidences
are pre-subtracted, the measurements are no
longer Poisson, so other models such as Shifted
Poisson [7] should be used. Since the emission
distribution inside the body changes with time due
to metabolism, methods to better estimate the
emission contamination should be found. Obtaining
good initial estimates is also important since the
joint problem is not globally convex and there might
be multiple minima. The choice of the penalty
hyperparameters β’s affects the reconstructions
considerably and their effect is not understood as



well as the single image reconstruction case where
there are approximations to estimate the spatial
resolution properties of the reconstructed images[8].
In the sequential methods, the resolution mismatch
between ACFs and emission data causes artifacts in
the emission images [1, 9]. In the joint estimation
method, this problem affects the emission images as
well. Finally, although theoretically joint estimation
seems more attractive and enables use of all the
information in PET scans, it remains to demonstrate
that it outperforms a good sequential approach
based on approximate statistical methods.
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surrogates algorithm for convergent penalized-
likelihood emission image reconstruction,” in Proc.
IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2, pp.
1132–5, 1998.

[7] M. Yavuz and J. A. Fessler, “New statistical models
for randoms-precorrected PET scans,” in Information
Processing in Medical Im., J. Duncan and G. Gindi,
editors, volume 1230 of Lecture Notes in Computer
Science, pp. 190–203, Springer Verlag, Berlin, 1997.

[8] J. A. Fessler and W. L. Rogers, “Spatial resolution
properties of penalized-likelihood image reconstruction
methods: Space-invariant tomographs,” IEEE Tr. Im.
Proc., vol. 5, no. 9, pp. 1346–58, September 1996.
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