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Abstract
We present a framework for designing fast and mono-

tonic algorithms for transmission tomography penalized-
likelihood image reconstruction. The new algorithms are
based on paraboloidal surrogate functions for the log-
likelihood. Due to the form of the log-likelihood func-
tion, it is possible to find low curvature surrogate func-
tions that guarantee monotonicity. Unlike previous meth-
ods, the proposed surrogate functions lead to monotonic al-
gorithms even for the nonconvex log- likelihood that arises
due to background events such as scatter and random coin-
cidences. The gradient and the curvature of the likelihood
terms are evaluated only once per iteration. Since the prob-
lem is simplified, the CPU time per iteration is less than
that of current algorithms which directly minimize the ob-
jective, yet the convergence rate is comparable. The sim-
plicity, monotonicity and speed of the new algorithms are
quite attractive. The convergence rates of the algorithms
are demonstrated using real PET transmission scans.

1 Introduction
Emission tomography systems require attenuation cor-

rection for quantitativelyaccurate image reconstruction.
Transmission scans are performed to estimate the attenu-
ation maps for correction. The accuracy of this correction
is very important in emission tomography [1]. Statistical
methods provide a valuable tool to reconstruct attenuation
maps in photon limited tomography applications. Penal-
ized likelihood is an appealing reconstruction method since
it provides an easy means to regularize the problem. Us-
ing the Poisson log-likelihood eliminates the negative bias
which occurs in the weighted least squares and conventional
methods [2].

However, up to now, no practically realizable monotonic
(or convergent) algorithm has been found which would op-
timize the penalized likelihood problem when the objective
is not convex. The objective is not convex when there are
“background” counts in the data. This is unescapable in
PET and SPECT, due to the accidental coincidences in PET
and emission crosstalk in SPECT. The assumption of no
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background counts can only be valid in X-ray CT. In this
paper, we present an algorithm which is guaranteed to be
monotonic even in the non-convex objective function case.
This algorithm depends on paraboloidal surrogate functions
to the log-likelihood which transform the problem into a
simpler optimization problem at each iteration. To obtain
the paraboloid, we find 1-D parabolic functions that are tan-
gent to and lie above each of the terms in the log-likelihood,
similar to Huber’s method for robust linear regression [3].

2 The Problem
The measurements in a photon limited application such

as PET and SPECT are well-modeled as Poisson random
variables. It is realistic to assume the following model:

yi � Poissonfbie
�[A�]

i + rig; i = 1; : : : ; N

whereN is the number of measurements.�j for j = 1 : : : p,
is the average linear attenuation coefficient in voxelj and
p denotes the number of voxels.[A�]i =

Pp

j=1 aij�j
represents the line integral of the attenuation map� and
A = faijg is theN �p system matrix.ri is the mean num-
ber of background events,bi is the blank scan count andyi
represents the number of coincident transmission events in
theith detector pair. We assume in this paper thatfbig; frig

andfaijg are known nonnegative constants.
The log-likelihood can be expressed in the following

form:

�L(�) =

NX
i=1

hi([A�]i); (1)

where:

hi(l) = (bie
�l

+ ri)� yi log(bie
�l

+ ri): (2)

Penalized likelihood image reconstruction formulation is
given below:

�̂ = argmin
��0

�(�); �(�) = �L(�) + �R(�): (3)

The roughness penalty included in the objective function
(in a very general form) can be given by [4]:

R(�) =

KX
k=1

 k([C�]k);



where k are potential functions penalizing the deviations
from the set of equationsC� � 0 for k = 1 : : :K whereK
is number of such equations. The� in equation (3) is a pa-
rameter which controls the level of smoothness in the final
reconstructed image. For more explanation of the penalty
function, see [4].

The objective function defined in (3) is not convex when
there are nonzero background counts (ri 6= 0) in the data. In
this realistic case, there is no guarantee that there is a single
global minimum. In this paper we introduce an algorithm
that is monotonic even when the objective is not convex.
The new approach is based on successive paraboloidal sur-
rogate functions.

3 Paraboloidal Surrogates Algorithms
The penalized-likelihood objective function�(�) has

a complex form that precludes analytical minimization.
Therefore, we apply an iterative approach, where at each
iteration we would like to find a “surrogate” function
�(�;�n) which is easier to minimize or to monotonically
decrease than�(�). To ensure monotonicity, a decrease in
the surrogate should lead to a decrease in the original ob-
jective function. Consider surrogate functions which satisfy
the following properties:

1: �(�n;�n) = �(�n)

2: r�(�;�n)j�=�n = r�(�)j�=�n ; (4)

3: �(�;�n) � �(�) for � � 0:

A function which satisfies these criteria can be easily shown
to satisfy the following monotonicity condition:

�(�)� �(�n) � �(�;�n)� �(�n;�n); 8� � 0: (5)

The EM algorithm [5] provides a statistical method for con-
structing surrogate functions�(�;�n) satisfying the above
conditions. However, in the transmission tomography prob-
lem, the EM surrogate is difficult to minimize and leads to
slow convergence. In this paper, we construct a simpler sur-
rogate using ordinary calculus rather than statistical tech-
niques.

Let �n denote the estimate of the attenuation map at the
nth iteration and letlni = [A�n]i denote the corresponding
estimate of theith line integral of the attenuation coefficient.
We choose the following quadratic form for the surrogate
functionsqi:

qi(l; l
n
i )

4
= hi(l

n
i )+

_hi(l
n
i )(l� l

n
i )+

1

2
ci(l

n
i )(l� l

n
i )

2; (6)

whereci(lni ) is the curvature of the parabolaqi. This con-
struction ensures thatqi(lni ; l

n
i ) = hi(l

n
i ) and

_qi(l
n
i ; l

n
i ) =

_hi(l
n
i ) similar to equation (4). To ensure mono-

tonicity, we must choose the curvatures to satisfy the fol-
lowing inequality ateach iteration:

hi(l) � qi(l; l
n
i ); for l � 0: (7)

After determining the parabolas, the following function can
be easily verified to be a global surrogate function for the
objective�(�) which satisfies the properties in (4):

�(�;�n) = Q(�;�n) + �R(�); (8)

where

Q(�;�n)
4
=

NX
i=1

qi([A�]i ; l
n
i ) (9)

� dh(l
n
)
0
A(� � �n) +

1

2
(� � �n)0A0D(ci)A(�� �n); (10)

where the column vectordh(ln)
4
=

h
_hi(l

n
i )

iN
i=1

, x0 denotes

the transpose ofx, andD(ci) is theN �N diagonal matrix
with diagonal entriesci(lni ) for i = 1; : : : ; N .

The surrogate function�(�;�n) in equation (8) consists
of the sum of a paraboloid (or a quadratic form) and the con-
vex penalty term. An algorithm that decreases the function
� will also monotonically decrease the objective function if
the inequality in (7) holds. In the following sections, we will
elaborate on different choices of curvatures and monotonic
coordinate descent algorithm applied to the surrogate.
3.1 Curvatures

The conventional “Newton” choice for the curvatures
ci(l

n
i ) is simply ci(lni ) = �hi(l

n
i ). However, this choice

does not ensure monotone convergence. The following two
choices for curvatures do ensure monotonicity.

3.1.1 Maximum Curvature

A simple choice forci(lni ) that ensures monotonicity (7) is
the maximum second derivative in the feasible region (from
mean value theorem, see for example [6], page 228). The
feasible region for the projections is[0;1) due to the non-
negativity constraint. Hence,

ci(l
n
i ) = max

l2[0;1)
f �hi(l)g

is guaranteed to satisfy (7). We show in [7] that the closed
form expression forci(lni ) is:

ci(l
n
i ) =

h
�hi(0)

i
+
=

��
1�

yiri

(bi + ri)2

�
bi

�
+

(11)

where[x]+ = x for x > 0 and zero otherwise.
However, this “maximum curvature” choice forci(lni )

is very conservative and results in slow convergence. It is
intuitive that smallerci(lni ) values will lead to faster conver-
gence, as analyzed in [7]. This is due to the fact that smaller
curvatures mean wider paraboloids and longer step sizes.
Next, we determine the smallest curvature that satisfies the
monotonicity condition (7).



3.1.2 Optimum Curvature

The optimal choice for the curvatures is the solution to
the following constrained optimization problem for eachi:
ci(l

n
i ) = minfc � 0 : hi(l) � hi(l

n
i )+

_hi(l
n
i )(l � lni ) +

1=2c(l � lni )
2 8l � 0

	
: This curvature yields the fastest

convergence rate while still guaranteeing monotonicity.
By exploiting the properties of the marginal negative log-

likelihood functions foreach projection (hi) in transmission
tomography, we show in [7] that the paraboloid with the
following curvature satisfies the optimality condition:

ci(l
n
i ) =

8>><
>>:

"
2
hi(0)� hi(l

n
i ) +

_hi(l
n
i )(l

n
i )

(lni )
2

#
+

; lni > 0;h
�hi(0)

i
+
; lni = 0:

(12)
There are some numerical issues with the computation of
these curvatures which are addressed in [7]. Next, we con-
sider a set of fixed curvatures which have some computa-
tional advantages.

3.1.3 Nonmonotonic Precomputed Curvature

By relaxing the monotonicity requirement, we can develop
faster yet “almost always” monotonic algorithms. We can
do this by choosing curvaturesci(lni ) in equation (6) such
that

hi(l) � qi(l; l
n
i );

rather than requiring the inequality (7). In this case,
the paraboloids are quadratic “approximations” to the log-
likelihood function ateach iteration. A reasonable choice
for the curvatures in that case is:

ci = �hi

�
log

bi

yi � ri

�
= (yi � ri)

2=yi: (13)

These curvaturesci in (13) are close approximations to the
second derivative ofhi functions at the projection values
A�̂where�̂ is the solution to the penalized-likelihoodprob-
lem [8]. Since these curvatures do not depend on the iter-
ations (like “maximum curvature”), some computation can
be saved by precomputing the denominator terms in the co-
ordinate descent update.

3.2 Monotonic Coordinate Descent
Once the curvatures are determined, the penalized like-

lihood problem is transformed into a problem with a
quadratic likelihood plus the convex penalty function. We
use one iteration of coordinate descent algorithm to de-
crease the surrogate function, and this results in a simple
monotonic algorithm. For the penalty part, we use Huber’s
iterative method [3, 4] (see also [7]). Since the likelihood

Initialize �̂; l̂i.
for each iteration

Compute_qi = _hi andci’s at current iterate
for each pixelj

Compute _Qnj (�̂); d
n
j , set�̂old = �̂.

for a couple subiterations
Compute _Rj(�̂), p̂j ,
_Qnj (�̂) =

_Qnj (�̂
old)+ dnj (�̂j � �̂

old
j ).

Update�̂j using (14)
end
Update_qi := _qi + aijci(�̂j � �̂oldj )

end

Updatêli := l̂i +
_qi � _hi

ci
end

Table 1: Coarse outline of PSCD algorithm.

part is quadratic, this coordinate descent method is guaran-
teed to decrease the surrogate function. The update equation
is as follows:

�̂newj =

"
�̂j �

_Qnj (�̂) + � _Rj(�̂)

dnj + �p̂j

#
+

: (14)

where:

_Qnj (�̂) =

NX
i=1

aij _qi(l̂i); d
n
j

4
=

NX
i=1

a2ijci(l
n
i );

_Rj(�̂) =

KX
k=1

ckj _ k([C�̂]k); p̂j
4
=

KX
k=1

c2kj! k([C�̂]k);

where! (t)
4
= _ (t)=t. To prove monotonicity, k(�) have

to be symmetric, differentiable, convex and! (0) should
be finite and nonzero and! (t) should be non-increasing
for t � 0 [3].

This is an update that monotonically decreases the value
of �(�;�n) and consequently the value of�(�). One iter-
ation is finished when all pixels are updated via (14) in a
sequential order. We call this method the Paraboloidal Sur-
rogates Coordinate Descent (PSCD) method. A coarse out-
line of the algorithm is given in Table 1. For computational
considerations and the detailed algorithmflow table, see [7].

4 Results
To assess the effectiveness and speed of the new PS al-

gorithms, we present results using real PET data. We ac-
quired a 15-hour blank scan (bi’s) and a 12-min transmis-
sion scan data (yi’s) using a Siemens/CTI ECAT EXACT
921 PET scanner with rotating rod sources for transmis-
sion. The phantom used was an anthropomorphic thorax
phantom (Data Spectrum, Chapel Hill, NC). The projection



space was 160 radial bins and 192 angles, and the recon-
structed images were128 � 128 with 4.5 mm. pixels. The
system matrixfaijg was computed by using 6 mm. wide
strip integrals with 3 mm. spacing, which roughly approxi-
mates the system geometry [2].

In PL reconstructions, we used the following penalty
function:

R(�) =
1

2

pX
j=1

X
k2Nj

wjk (�j � �k)

with the edge-preserving nonquadratic potential function
that was introduced in [9]

 (x) = �2 [jx=�j � log(1 + jx=�j)] :

Fig. 1 shows that the proposed PSCD algorithms in-
creased the penalized-likelihood almost as fast as the co-
ordinate descent algorithm (CD) [10] applied to the orig-
inal objective per iteration. It shows that the surrogate
paraboloids closely approximate the original log-likelihood.
More importantly, in Fig. 2 the PSCD algorithms are seen
to be much faster than coordinate descent in terms of the
actual CPU time. This reduction is due to the lack of ex-
ponentiations in updating the gradient terms in PSCD al-
gorithms. The “maximum curvature” method introduced
in Section 3.1 precomputes the denominator terms (dnj ) for
the likelihood part sinceci(lni )’s do not depend on the itera-
tions. However, theseci(lni )’s are much larger than the opti-
mal curvatures, so more iterations are required for PS,M,CD
than PS,O,CD to converge. We also compared the PSCD al-
gorithms to the general purpose constrained Quasi-Newton
algorithm (LBFGS) [11], and the functional substitutionco-
ordinate descent (FSCD) [12, 13] algorithm in Figures 1
and 2. Although the LBFGS algorithm takes about 25%
less CPU time (0.88 seconds) per iteration than PSCD al-
gorithms, it did not converge as fast as the proposed algo-
rithms. FSCD algorithm (which is guaranteed to be mono-
tonic whenri = 0) had the largest CPU time per itera-
tion due to extra exponentiations needed. Table 2 compares
the number of iterations and CPU seconds required (in a
DEC 600 5-333 MHz workstation) to minimize the objec-
tive function for different methods. The CPU times per iter-
ation are also tabulated. For comparison purposes, a single
forward and backprojection requires about 0.78 CPU sec-
onds. If a monotonic algorithm is required, the PSCD al-
gorithm with the optimal curvature (PS,O,CD) is the fastest
algorithm. Among the nonmonotonic algorithms, another
PS method, PSCD with precomputed curvatures (PS,P,CD)
is the fastest. It converged in about 15 seconds with the real
data used. The CPU time per iteration is the same as PSCD
with maximum curvature (PS,M,CD) since they both pre-
compute the denominator (dnj ) terms, but this method de-
creases the objective faster since the curvatures are smaller.
Nevertheless PS,P,CD is not guaranteed to be monotonic.

Real data,
ri 6= 0

monotonic nonmonotonic

methods P
S

,M
,C

D

P
S

,O
,C

D

F
S

C
D

C
D

P
S

,P
,C

D

G
D

,3
x3

iterations for
convergence 18 12 11 11 11 14

CPU s for
convergence 23 17 56 44 15 18

CPU s per
iteration

1.2 1.3 4.9 3.8 1.2 1.1

Table 2: Comparison of CPU times and iterations for
the PS algorithm versus FS, CD and GCD methods.
Convergence in this table means�(�0) � �(�n) >

0:999
�
�(�0) ��(��)

�
where�(��) is the smallest objec-

tive value obtained.
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Figure 1: Comparison of objective function decrease
�(�0) � �(�n) versus iteration numbern of PSCD meth-
ods with coordinate descent, FSCD and LBFGS methods
for real phantom data.

5 Conclusion
We have introduced a new class of algorithms for min-

imizing penalized-likelihood objective functions for trans-
mission tomography. The algorithms are monotonic even
with the nonconvex objective function. In the strictly con-
vex case, the proposed algorithms are guaranteed to con-
verge to the global minimum by a proof similar to that
in [14].

The algorithms we introduced are simple, easy to under-
stand, fast and monotonic. The simplicity in part is due to
the additive form of (1), which is a direct consequence of
independent measurements. Since this algorithm is simple,
it might replace the use of FBP in the clinic.

In our opinion, the PS,O,CD algorithm supersedes all of
our previous methods [2, 8], and is our recommended al-
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Figure 2: Same as Figure 1, but x-axis is CPU seconds on a
DEC AlphaStation 600 5-333 MHz.

gorithm for penalized-likelihood transmission tomography.
The PS,P,CD algorithm is a faster but nonmonotonic alter-
native which can be used for noncritical applications. As
a possible compromise, one can run PS,P,CD algorithm and
check the objective function�(�) after each iteration to ver-
ify that it has decreased. If the objective does not decrease
(happens very rarely), then PS,O,CD algorithm can be ap-
plied to the previous iterate to ensure monotonicity.
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