PHASE-SENSITIVE AND RECOGNITION-BOOSTED SPEECH SEPARATION
USING DEEP RECURRENT NEURAL NETWORKS

Hakan Erdogan*' John R. Hershey*

Shinji Watanabe* Jonathan Le Roux*

* Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA
fSabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey
haerdogan @sabanciuniv.edu, {hershey, watanabe, leroux } @merl.com

ABSTRACT

Separation of speech embedded in non-stationary interference is a
challenging problem that has recently seen dramatic improvements
using deep network-based methods. Previous work has shown that
estimating a masking function to be applied to the noisy spec-
trum is a viable approach that can be improved by using a signal-
approximation based objective function. Better modeling of dynam-
ics through deep recurrent networks has also been shown to improve
performance. Here we pursue both of these directions. We develop a
phase-sensitive objective function based on the signal-to-noise ratio
(SNR) of the reconstructed signal, and show that in experiments
it yields uniformly better results in terms of signal-to-distortion
ratio (SDR). We also investigate improvements to the modeling
of dynamics, using bidirectional recurrent networks, as well as by
incorporating speech recognition outputs in the form of alignment
vectors concatenated with the spectral input features. Both meth-
ods yield further improvements, pointing to tighter integration of
recognition with separation as a promising future direction.

Index Terms— speech enhancement, speech separation, deep
networks, LSTM, ASR

1. INTRODUCTION

The goal of single-channel speech separation is to recover a target
speaker from a mixture of background signals. Whereas speech en-
hancement focuses on stationary or nearly stationary backgrounds,
speech separation refers to the case where the background is highly
non-stationary and can contain difficult sources such as music or
other speech signals. This problem has traditionally been ad-
dressed using model-based approaches, for example based on hidden
Markov models (HMMs) [1], or non-negative matrix factorization
(NMF) [2] and its extensions [3-5].

Lately, however, there has been increasing interest in purely
data-driven discriminative approaches, such as deep neural networks
and recurrent neural networks, which perform surprisingly well [6—
11] . Supervised learning of time-frequency masks for the noisy
spectrum has been investigated in [11-15], using stereo training data
in which noisy speech is the input, and a target time-frequency mask
based on the corresponding clean speech data forms the output. Sub-
sequent work [6] focused on modeling dynamics well using long
short-term memory (LSTM) recurrent neural networks which helped
achieve state of the art performance on a difficult task with non-
stationary interference. Here, we investigate whether the objective
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or in other words, the cost function and dynamics can be further im-
proved.

We first explore improvements to the objective function. In pre-
vious work [6], the network estimates a filter or frequency-domain
masking function that is applied to the noisy spectrum to produce
an estimate of the clean spectrum. The objective function computes
error in the amplitude spectrum domain between the speech estimate
and the clean speech target. The reconstructed speech estimate re-
tains the phase of the noisy input.

However, when noisy phase is used, the phase error interacts
with the amplitude, and the best reconstruction in terms of signal-
to-noise ratio (SNR) is obtained with amplitudes that differ from the
clean speech amplitudes. Here we consider directly using a phase-
sensitive objective function based on the error in the complex spec-
trum, which includes both amplitude and phase error. This allows the
estimated amplitudes to compensate for the use of the noisy phases.

To improve the modeling of dynamics, we consider bidirectional
recurrent networks, and the use of higher-level language informa-
tion provided by integration with a speech recognizer. The LSTM
recurrent network was used in prior work [6] to provide a causal
system that could be used in on-line inference mode for low-latency
enhancement. Here we consider whether bidirectional recurrent net-
works provide additional gains. This also provides a better baseline
for investigating the use of higher level information from a language
model, obtained by integration with an automatic speech recognizer,
since the recognizer also uses bidirectional inference in the form of
an utterance-level Viterbi algorithm.

Language models have previously been integrated into model-
based speech separation systems [1, 16]. Feed-forward neural net-
works, in contrast to probabilistic models, support information flow
only in one direction, from input to output. This leaves us with a
chicken and egg problem. The speech separation network can bene-
fit from the recognized state sequences, and the recognition system
can benefit from the output of the speech separation system. In the
absence of a fully integrated system, one might envision a system
that alternates between separation and recognition in order to obtain
benefits in both tasks.

Here we investigate using a noise-robust recognizer as the first
pass. The recognized state sequences are combined with noisy fea-
tures and used as input to a recurrent neural network trained to re-
construct the speech.

We present experiments demonstrating improvements from the
phase-sensitive objective function, the use of bidirectional recurrent
networks and the integration with the recognizer.
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2. SEPARATION WITH TIME-FREQUENCY MASKS

Time-frequency filtering methods estimate a filter or masking func-
tion to multiply by the frequency-domain feature representation of
the noisy speech, in order to form an estimate of the clean speech.

We consider the complex short-time spectrum of the noisy
speech, yy ¢, the noise, ny, and the speech, sy, obtained via
discrete Fourier transform of windowed frames of the time-domain
signals. Given an estimated masking function ay ¢, the clean speech
is estimated by 57+ = ays:yy,¢. In parallel training, the clean and
noisy speech signals are provided, and an estimator a(y|0) for the
masking function is trained by minimizing an objective function,
6 = argming > .+ D(ays:) where a, y denote variables for all
time-frequency bins and @ are parameters. In the rest of this section,
we drop f,t and consider a single time-frequency bin.

Various objective functions have been used, of which there are
two types: mask approximation (MA) and signal approximation
(SA). The MA objective functions compute a target mask a* (s, y),
and then measure the error between the estimated mask and the target
mask: Dma(a@) = D(a”||a@). SA objectives measure error between
the filtered signal and the target clean speech: Dg,(d) = D(sl||ay).

In mask approximation, a reasonable cost function is the squared
error Dima(G) = |&@ — a*|? although other error functions can be
used. Various “ideal” masks have been used for a*; the most com-
mon have been the so-called “ideal binary mask”(IBM) [17], and the
“ideal ratio mask”(IRM) [18]. See Table 1 for the formulas.

Table 1. Various masking functions a for computing a speech esti-
mate § = ay, their formula in terms of a, and conditions for optimal-
ity. In the IBM, §(x) is 1 if the expression x is true and 0 otherwise.

target mask/filter formula optimality principle
IBM: a™™ = §(|s| > |n|), maxSNRa € {0,1}
IRM: grm = ol max SNR 6, = 0n,
Is| + Inl
Wi P wi Is|?
Wiener like”: " ==, max SNR, expected power
[ + Inl
ideal amplitude: a* = |s|/]yl, exact |§|, max SNR 6, = 0,
phase-sensitive filter:  aPf = % cos(), max SNR given a € R
Y
ideal complex filter: = / Y, max SNR givena € C

The IBM is better than any other binary mask in terms of sig-
nal to noise ratio (SNR). But binary masks are not the best one can
do. The @™ is a sub-optimal masking function in terms of SNR.
It is optimal in the special case that the phase of s and n are the
same, but most of the time they are not. The IRM also does not
estimate the amplitude |s| well, since |a™™y| # |s|. The Wiener
filter, E|s|?/(E|s|* + F|n|*) has optimal average SNR when the
average power statistics are computed for a stationary signal. In
the case of single frame processing the “Wiener-like” filter o™ =
|s|?/(s|* + |n|?) is, like the IRM, sub-optimal. From the stand-
point of estimating the amplitude, the optimal filter is o = |s|/|y|
since then || = o' |y| = |s].

However, the ideal mask in terms of SNR is easy to derive:
the filter that maximizes SNR = log |s|?/|§ — s|, or equivalently
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which minimizes D(s||ay) = |ay — s|?, is the complex filter a'*f =

s / y. Estimating this involves phase estimation, which is potentially
tricky, and here we restrict ourselves to using a € R, and keeping
the noisy phases. The optimal phase-sensitive filter (PSF) under this
constraint is

a™" =Re <f> = Bl (=) = Bl oo (M
Y |yl ( ) |yl ©)

where § = 6° — 6”.

Rather than using an MA objective function, [6] showed that
using a magnitude spectrum approximation (MSA) Dmsa(d) =
(ay| — |s|)? leads to a significant improvement. Here we propose
using a phase-sensitive spectrum approximation (PSA) Dpsa(a) =
lay — s|?, from which we derive the optimal real-valued filter. This
distortion measure is equivalent up to an additive constant to using
Dypsa(@) = (a|y| — |s| cos(#))?. Despite the use of the MSA/PSA
objective function, it is still desirable to have the output of the net-
work be a mask, since then the entire dynamic range of the data does
not have to be covered by the output of the network. It is convenient
in this context to truncate a to between 0 and 1, to fit the range of a
sigmoid unit. In addition, we conjecture that mask prediction would
also avoid global variance problems reported in [10].

To investigate the performance of various ideal masking func-
tions and filters, we performed oracle experiments on the CHIME-2
development set [19]. We applied each filter to the noisy data and
computed signal to distortion ratio (SDR) results at various input
SNR levels. We present our results in Table 2. In these experiments,
the oracle phase-sensitive filter significantly outperforms the other
filters in terms of SDR. The truncation to the range of [0, 1] causes a
loss of 1.59 dB, but the truncated phase-sensitive filter is still signif-
icantly better than the other methods.

Table 2. SDR results (in dB) at various SNR levels on the CHIME-2
development (dt) data using various oracle masks.

dt|-6dB 9dB | Avg

IBM | 14.56 20.89 | 17.59

IRM | 14.13 20.69 | 17.29

“Wiener-like” | 15.20 21.49 | 18.21

ideal amplitude | 13.97 21.35| 17.52
phase sensitive filter | 17.74 24.09 | 20.76
truncated PSF | 16.13  22.49 | 19.17

3. LSTM AND BLSTM NETWORKS FOR SEPARATION

For sequential data prediction, recurrent neural networks seem to be
the right neural network model since they make use of the context
information by connecting hidden nodes to their counterparts in the
previous step of the sequence. Alternatively, to enable the use of
context in deep feed-forward neural networks, one needs to explic-
itly concatenate multiple input vectors from neighboring sequence
steps and enrich the input data.

However, because of the “vanishing or exploding gradients”
problem that can occur during back-propagation through time, it is
quite hard to train good performing RNNs for sequence prediction.
An old and efficient trick is to introduce LSTM structures in RNNs
which help alleviate the gradient problems [20]. LSTM introduces
the concept of a “memory cell” with input, output and forget gates
which are also basically recurrent units that have outputs in the range
[0, 1] and modify the scalars or vectors stored in the cells using the
multiplication operation. One can think of LSTM as replacing the
hidden nodes of RNN's with memory cells and introducing additional



gates to control the flow of information into and out from the cell.
The recurrent connection from each memory cell to itself is just 1
so that the gradient never vanishes or blows up as back-propagation
through time is performed [20]. It has been shown that using LSTM
structures, one can learn sequential prediction networks which are
able to make use of long-term contextual information [20]. In con-
trast, the performance of deep neural networks on speech separation
is suboptimal to LSTM-RNNs as shown in [6].

In this work, we also investigate use of the bidirectional long
short-term memory (BLSTM) networks [21]. In BLSTMs, there are
recurrent connections in both forward and backward directions. A
BLSTM can make use of contextual information from both sides in
the sequence. In subsequent work, single directional LSTMs were
used to enable real-time performance of the enhancement system [6].

Although the BLSTM neural network makes use of forward and
backward context information, it still does not have access to a lan-
guage model hence cannot explicitly use long-term word-level in-
formation. Therefore in the next section we turn to investigating
whether additional information can be derived from a speech recog-
nition system. Since speech recognition uses bidirectional inference
in the form of the Viterbi algorithm, the BLSTM is an appropriate
neural network baseline and has the same algorithmic latency re-
quirements as the speech recognition system.

4. INCORPORATING SPEECH RECOGNITION
INFORMATION

Speech enhancement and recognition can be considered as different
but related problems. A good speech enhancement system can cer-
tainly be used as an input module to a speech recognition system.
Conversely, speech recognition might be used to improve speech en-
hancement since it incorporates additional information such as the
language model. However, it is not clear how to build a multi-task
recurrent neural network system for both tasks.

In this paper, we simply perform a first step towards the inte-
gration of speech recognition and enhancement problems. For each
frame of noisy input signal to be enhanced, we use the most likely
state or phone that aligns to that frame as obtained from a speech
recognizer. We have 2004 tied states and 42 phones' in our recog-
nition system for the CHiME-2 dataset. The alignment informa-
tion is provided as an extra feature added to the input of the LSTM
network. We experimented with different kinds of features for the
alignment information. First, we used a one-hot representation to
indicate the frame-level state or phone. When done for the context-
dependent states, this yields a large vector which could pose diffi-
culties for learning. We also experimented with using continuous
features derived by averaging the spectral features, aligned to each
state or phoneme, calculated from the training data. This yields a
shorter input representation and provides some kind of similarity-
preserving coding of each state. In addition, the information is in the
same domain as the other noisy spectral input which could make it
easier for the network to utilize when predicting the mask.

5. EXPERIMENTS AND DISCUSSION

We performed experiments on the 2nd CHiME speech separation
and recognition challenge (CHiME-2) medium vocabulary track
database [19]. The noises in this database are highly non stationary
and extremely challenging. They include TV in the background,

Actual number of phones is higher but we merge similar phones and
different varieties of the same phone.
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noises from household appliances, children talking and making
noises while playing and similar real-life living room sounds. The
noisy signals are formed by mixing clean speech utterances from the
Wall Street Journal (WSJ-0) corpus of read speech with recorded
noises at SNR levels -6, -3, 0, 3, 6 and 9 dB. There is a 7138 ut-
terance training set which includes various noisy mixtures, a 2460
utterance development set which is derived from 410 clean speech
utterances, each mixed with a noise signal at six different noise lev-
els. Similarly, there is an evaluation set that includes 1980 utterances
derived from 330 clean speech signals.

We first measured in Table 1 the performance of the various ideal
masks that we introduced in Section 2, providing upper bounds on
performance. These results show that, using the phase-sensitive ideal
filter, one can achieve about 2 dB higher SDR performance as com-
pared to using the IRM, even with the truncated version. This result
encourages us to use the phase-sensitive objective function Dpss, in
training neural networks instead of trying to approximate only the
spectral magnitude.

In our experiments, all input vectors were mean-and-variance
normalized using the training data statistics. For the alignment vec-
tors, we normalized using clean alignments on the training data. The
networks were trained with a momentum-based mini-batch stochas-
tic gradient algorithm. The momentum coefficient was 0.9 and the
learning rate was 10™5. Validation cost on the development set was
used as a stopping criteria. If the validation cost did not decrease for
at least 10 epochs, the training is stopped. A zero-mean and o = 0.1
Gaussian noise was added to the training samples to improve robust-
ness. This setup is based on [6].

Our baseline network has two LSTM layers with 256 nodes
each, trained using 100-bin log-mel-filterbank features as the input.
Prior work [6] showed that careful multi-stage training of the LSTM
network is essential to obtain good speech separation performance.
Following this recipe, the network was first trained to predict a 100-
bin mel-transformed mask output using the mask approximation cost
function. In order to map to a full spectrum domain, a sigmoid layer
was added, with weights initialized to the Mel-transform’s regular-
ized pseudo-inverse 2. The network training objective function was
modified to be the magnitude spectrum approximation cost and all
layers of the network continued to be trained with the new cost func-
tion. This LSTM-MSA baseline system gave stellar results surpass-
ing the state-of-the-art NMF-based speech enhancement results by at
least 2.8 dB consistently in each SNR condition. Thus, our baseline
is an extremely strong one which is quite hard to beat.

As ASR-based input features for each frame, we used one-best
state-level or phone-level alignments from a noise-robust recognizer,
trained on the CHIME-2 training set. We use a multi-stage training
approach to incorporate the alignment information. We first train a
spectral LSTM network which only uses log-mel-filterbank inputs.
After obtaining a well performing network, we add the new align-
ment inputs to the input layer of the network and initialize the addi-
tional input weights to be zero. This ensures that the new network
starts exactly from the earlier network and changes the weights ac-
cording to the network’s cost criterion to improve the results. Ran-
dom initialization of the network did not work as well as this in-
formed initialization.

Our initial experiment involved using clean speech signal’s
frame-level alignment with the reference transcript both in training
and development set. This experiment acted as an oracle upper limit
on the performance when the frame-level state information is used.
Oracle alignment information aids speech enhancement by provid-

2This step is slightly different than the one in [6].



ing the active state at each frame which the network learns to exploit
to get a better mask ay; at each time-frequency bin. The initial
features were in the form of a one-hot vector, with one input for
each state. However, we expected that this form of state information
would not be easy to learn for the network, so we also experimented
with adding the state information in the form of an average feature
vector of frames that align to a particular state, learned from the
training data.

In order to have realistic results, we needed to obtain alignments
from noisy data. We performed DNN-based speech recognition on
pre-processed speech data enhanced with the LSTM network trained
with magnitude DFT features from [6] to obtain the one-best de-
coded transcriptions. These transcriptions were aligned with the en-
hanced speech data to obtain noisy alignment features. We further
attempted to train the network using these noisy alignment features
starting from the network trained with the clean alignment features.
The accuracy of noisy alignments in development and evaluation
sets is 50-55% for state-level alignments, whereas it is 65-70% for
phone-level ones. In our experiments, further training with the noisy
alignments did not always reduce the objective function on the vali-
dation data. If it was not reduced, we just used the network trained
with the clean alignments.

The results using the oracle and noisy alignment information are
given in Table 3. In the table, the “input” column describes the in-
put used; ‘mfb’ stands for log-mel-filterbank features with 100 bins.
For the alignment part of the input, we use three symbols to describe
the input: ‘oa’ for oracle alignment versus ‘na’ for noisy alignment,
followed by ‘ph’ for phone alignment versus ‘st’ for state alignment,
and finally ‘1h’ for one-hot, versus ‘sm’ for spectral mean and ‘spm’
for spectral power mean. In the “cost” column, ‘MA’ stands for mask
approximation and ‘MSA’ stands for magnitude spectrum approxi-
mation. We only provide SDR values for -6 and 9 dB SNR cases and
the average over all six SNR values for brevity. The different forms
of alignment information (phoneme versus state) and features (one-
hot versus spectral average) all yield similar results. This shows that
the network is using the alignment information in whatever form we
provide it. In other experiments, we arbitrarily use the “na,st,sm”
variety of the alignment features.

Table 3. SDR results (in dB) on the CHiME-2 development data set
using alignment information as additional inputs.

Network Cost | Input -6dB| 9dB | Avg
LSTM 2x256 | MA | mfb 8.77 116.71 | 12.76
LSTM 2x256 | MSA | mfb 9.24 11693 | 13.03
LSTM 2x256 | MSA | mfb+oa,ph,1h | 10.00 | 17.28 | 13.60
LSTM 2x256 | MSA | mfb+oa,st,1h | 9.98 | 17.32 | 13.58
LSTM 2x256 | MSA | mfb+oa,st,sm | 10.09 | 17.33 | 13.63
LSTM 2x256 | MSA | mfb+oa,st,spm | 10.17 | 17.39 | 13.69
LSTM 2x256 | MSA | mfb+na,st,sm | 9.64 | 17.12 | 13.36
LSTM 2x256 | MSA | mfb+na,st,spm | 9.59 | 17.15|13.33

We wanted to see if recognition information would still provide
gains after other improvements. We sought to improve the LSTM
baseline by considering a bidirectional LSTM network, as well as
using a phase-sensitive spectrum approximation (PSA) cost function
as discussed in Sections 2 and 3. In Table 4, we observe that BLSTM
with 2 layers and 256 nodes at each layer provides 0.14 dB improve-
ment over a similar LSTM network. However since half of the nodes
are used for each direction (forward and backward) it makes sense
to increase the number of nodes of the BLSTM network. When we
used 384 nodes at each layer, we obtain 0.43 dB improvement over
the LSTM-MA baseline. With MSA cost, LSTM-MSA baseline still
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improves by about 0.4 dB when using the BLSTM network. Using
the PSA cost and starting the new network from the MSA-based one,
the MSA enhancement result can be further improved by about 0.3
dB as can be seen in Table 4. Adding the noisy alignment inputs at
this stage still provides about 0.2 dB improvement over the previous
best result which constitutes an overall improvement of 0.9 dB over
the LSTM-MSA baseline.

We provide the results on the CHiME-2 evaluation set in Table
5 in terms of SDR and speech-to-interference ratio (SIR). The im-
provements are similar to the development set improvements and we
still see a combined improvement of about 0.90 dB in SDR and 2.5
dB in SIR.

Table 4. SDR results (in dB) on the CHiME-2 development data set
using BLSTM and PSA.

Network Cost | Input -6dB | 9dB | Avg
LSTM 2x256 |MA | mfb 8.77 | 16.71 | 12.76
BLSTM 2x256 | MA | mfb 8.92 |16.83|12.90
BLSTM 2x384 | MA | mfb 9.39 |16.97 | 13.19
LSTM 2x256 | MSA | mfb 9.24 116.93|13.03
BLSTM 2x384 | MSA | mfb 9.76 | 17.28 | 13.45
LSTM 2x256 |PSA | mfb 9.71 | 17.09 | 13.36
BLSTM 2x384 | PSA | mfb 10.21|17.43 | 13.76
LSTM 2x256 | MSA | mfb+na,st,sm | 9.64 | 17.92 | 13.36
BLSTM 2x384 | PSA | mfb+na,st,sm | 10.50 | 17.56 | 13.97

Table 5. SDR results (in dB) on the CHIME-2 evaluation data set.

Network Cost | Input Avg-SDR | Avg-SIR
LSTM 2x256 | MSA | mfb 13.83 17.53
BLSTM 2x384 | MSA | mfb 14.22 18.24
LSTM 2x256 |PSA |mfb 14.14 19.20
BLSTM 2x384 | PSA | mfb 14.51 19.78
BLSTM 2x384 | PSA | mfb+na,st,sm | 14.75 20.46

6. CONCLUSIONS AND FUTURE WORK

We improved the speech separation performance on the CHIME-2
database by about 0.90 dB using (a) bidirectionality of the recur-
rent network, (b) phase-sensitive spectrum approximation, and (c)
incorporating speech recognition alignment information within the
LSTM-DRNN framework for speech enhancement. These improve-
ments may be applicable in other speech processing problems such
as bandwidth extension and voice conversion. It is interesting to see
that the improvements are mostly additive.

In our view, promising future directions include prediction of the
target phase rather than using the noisy phase, and tighter integration
of language model information in speech separation.
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