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Abstract—In this paper we propose an approach for the problem
of single channel source separation of speech and music signals. Our
approach is based on representing each source’s power spectral density
using dictionaries and nonlinearly projecting the mixture signal spec-
trum onto the combined span of the dictionary entries. We encourage
sparsity and continuity of the dictionary coefficients using penalty
terms (or log-priors) in an optimization framework. We propose to
use a novel coordinate descent technique for optimization, which
nicely handles nonnegativity constraints and nonquadratic penalty
terms. We use an adaptive Wiener filter, and spectral subtraction
to reconstruct both of the sources from the mixture data after
corresponding power spectral densities (PSDs) are estimated for each
source. Using conventional metrics, we measure the performance of the
system on simulated mixtures of single person speech and piano music
sources. The results indicate that the proposed method is a promising
technique for low speech-to-music ratio conditions and that sparsity
and continuity priors help improve the performance of the proposed
system.
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I. INTRODUCTION

We may encounter mixtures of speech and music audio in
many places including broadcast news and other shows on TV
and radio. The performance of an automatic speech recognizer
quickly degrades when there is music in the background. It would
be beneficial to remove music from the data for improved speech
recognition. Separating speech and music from their mixture can
also find application in the entertainment industry.

Blind source separation (BSS) uses minimal assumptions about
the source signals, such as non-Gaussianity [1], [2]. In semi-blind
source separation we assume that we have example “training” data
from each source. However, this data is not transcribed or labeled
in any way. Also, during testing, unlike [3] we do not impose a
grammar on the speech signal since no such information is assumed
available. Our goal is to reconstruct speech source signal as close
as possible to the original signal and with less interference from
the background music. There have been other studies on semi-
blind separation of speech and music, or many musical instruments
from each other [4], [5], [6], [7]. In these approaches, typically a
short-time spectral dictionary of each source is developed and the
mixed signal spectrum is represented as a linear combination of
these dictionary entries. In [4], a non-negative sparse representation
is employed and the sources are reconstructed using the Wiener
filter. In [7], sparse coding with a temporal continuity objective was
used. The work focuses on separating musical instruments and the
continuity of the decomposition was enforced using an L1 norm
penalty. The reconstruction was done by inverse discrete Fourier
transform (DFT) and overlap-add.

Our approach uses trained models of speech and music short-
time spectra. It relies on non-negative sparse decomposition taking
into account temporal continuity of the decomposition coefficients.
The novelty in this paper is in three different aspects. First, we
use both continuity and sparsity information for speech/music
separation. A similar approach has been used in the context of
musical instrument separation [7], but not for speech and music
separation. Secondly, we introduce a new coordinate descent al-
gorithm which is easy to implement and simple to understand for
estimating the source power spectral densities. This algorithm also
easily handles nonnegativity constraint. Earlier work used different
algorithms based on Lagrange functionals and gradient descent
[4] or a multiplicative update followed by gradient descent [7].
Thirdly, we explore both Wiener and spectral subtraction filters
for reconstruction. Earlier work focused on Wiener filter and time-
frequency shrinkage [5]. Using the performance criteria defined
in [8], we get similar or better results as compared to the previous
works [4], [5].

The remainder of this paper is organized as follows. In section II,
we give a mathematical description of the problem. In section III,
we show how we estimate the power spectral densities for the
mixed sources. We give a brief explanation about some of the
standard algorithms that are used in separation of mixed signals in
section IV. In the remaining sections, we present our observations
and the results of our experiments.

II. PROBLEM FORMULATION

Single channel signal separation problem can be defined as
follows. Assume we are given an observed signal y(t), which is
the mixture of two sources x(t) and m(t). The source separation
problem consists of finding estimates for x(t) and m(t) from y(t).
Algorithms presented in this paper are applied in the short time
Fourier transform (STFT) domain. Denote by Y (t, f) the STFT of
y(t), where t represents the frame index and f the frequency-index.
Due to linearity of the STFT, we have:

Y (t, f) = X(t, f) +M(t, f). (1)

Assuming independence of the sources, we can write the power
spectral density (PSD) of the measured signal as the sum of source
signal PSDs.

σ2
y(t, f) = σ2

x(t, f) + σ2
m(t, f), (2)

where σ2
y(t, f) = E(|Y (t, f)|2). Here σ2

x(t, f) and σ2
m(t, f)

are the unknown power spectral densities (PSDs), and need to
be estimated using measured data and training speech and music
spectra. The PSD for the measured signal y(t) is estimated using



the periodogram by taking the squared magnitude of the DFT of
the windowed signal.

Once good estimates of PSDs for speech and music are de-
termined, we can get an estimate for x(t), say x̂(t) using one
of Wiener, or spectral subtraction filters, which we explain in
section IV.

III. ESTIMATING SOURCE POWER SPECTRAL DENSITIES

In this section, we show how we build our codebook, and give
mathematical formulation for using sparsity and continuity priors
for decomposing the observed mixed signal into linear combination
of the training codebook entries, and find the values of coefficients
for this linear combination.

A. Learning the codebooks

We extract normalized PSDs from training data for each source
type. We collect these PSDs as representative PSDs for each source.
We need a way to obtain a dictionary from these PSDs. We used
the k-means algorithm on the collections of PSDs for each source
type. This gives us a vector quantization type of codebook for
each source. We set the size of the dictionaries for each source
arbitrarily. However, one can optimize the dictionary size as well.
The optimal size of the dictionary may depend on the amount of
training data.

B. Using codebooks for decomposition

We will write the PSDs of speech and music signals as a linear
combination of the entries in a codebook. So, we will represent
them as follows:

σ2
x(t, f) ≈

dx∑
k=1

αk(t)vk(f), (3)

σ2
m(t, f) ≈

d∑
k=dx+1

αk(t)vk(f). (4)

Here, vk(f)’s represent codebook spectra for the speech and the
music signals. In practice, we sample the frequency values so that
each vk can be represented as a vector of spectral entries. There are
dx codebook entries for speech and dm such entries for music. The
coefficients αk are the nonnegative coefficients that multiply each
codebook entry. After one learns the dictionary for each source
type, one needs to estimate the coefficient vector

α (t) = [α1(t), ..., αd(t)]T (5)

of dimension d = dx + dm for each time frame t. Note that the
dictionary entries are neither orthogonal to each other nor form
an orthogonal subspace for speech and music. In fact, we have
overlapping subspaces which are difficult to separate.

C. Objective function

In order to estimate the coefficient vector α (t), we propose
using a penalized least squares approach. The penalty terms (or log-
priors) have two purposes: sparsity and continuity. The data fidelity
term measures the deviation from the measured PSD. For the
purposes of optimization, we will represent the measured spectrum
σ2

y(f) as the vector y of spectral entries. The optimization problem

is defined as α̂ = argminφ(α) subject to αk ≥ 0, k = 1, . . . , d
where

φ(α) =

∥∥∥∥∥y −
d∑

k=1

αkvk

∥∥∥∥∥
2

2

+β
∥∥∥α−αprev

∥∥∥2

2
+γ

d∑
k=1

|αk|e . (6)

The length of each spectral vector y and vk is 1 +Nfft/2. We
take only positive frequency indices since the rest can be obtained
using conjugate symmetry. The term with β is the discontinuity
penalty term. It penalizes the departure of α from αprev, the vector
found in the previous frame. The term with γ is the term that
enforces sparsity. It encourages sparseness of α vector by using
an L1 type of norm with a value of e close to 1. The reason for
nonnegativity of αk is that the PSD should always be nonnegative
and if the αk are nonnegative, that will make sure that the obtained
PSDs are nonnegative.

The model for the PSDs is obtained as a linear combination of
dictionary entries for each type of source. One can envision the
coefficient vector α (t) as being a sparse vector which changes
slowly in time. The reason for sparseness is clear since at one
instant of time, one expects to find a single dictionary entry active
for each source. Thus, we should expect α (t) to be sparse. The
reason for slow changing α (t) is the fact that neighboring frames
are highly correlated, so we expect α (t) to be similar to α (t− 1).

D. Coordinate descent optimization

Due to the nonnegativity constraint and the nonquadratic nature
of the sparsity prior, it is not easy to optimize the objective function
directly. So, we propose using coordinate descent optimization
where one parameter at a time is optimized while the others are
kept constant. Enforcing nonnegativity is also easy in coordinate
descent, namely if one parameter becomes negative, we just set it
back to 0.

The algorithm works as follows. We have global iterations and
within each global iteration we iterate sequentially through each
parameter i = 1, . . . , d. We calculate the partial derivative of the
objective function with respect to αi:

∂φ

∂αi
= −2vT

i y+(vT
i

k∑
j=1

2αjvj)+2β(αi−αprev
i )+γe |αi|e−1 .

(7)
For e = 2, we can set the partial derivative to zero and solve for
the minimizer from there, and we obtain the following update:

α∗i =

 1

vT
i vi + β + γ

βαprev
i + vT

i (y −
∑
l 6=i

αlvl)


+

,

(8)
where [x]+ = max(0, x). For e 6= 2 we perform a few iterations
(typically three) of Newtons update. For that, we need to find the
second partial derivative with respect to αi:

hi =
∂2

∂α2
i

(φ(α)) = 2vT
i vi + 2β + γe(e− 1) |αi|e−2 . (9)

Then, the update is as follows:

α∗i =

[
αi − h−1

i

∂

∂αi
φ(α)

]
+

. (10)

Note that, the second derivative becomes infinite for αi = 0. In
that case, while calculating the second derivative, we set αi to be



a very small value. In practice, we stop global iterations when the
change in α is negligible.

IV. RECONSTRUCTION OF THE SOURCE SIGNALS USING

ZERO-PHASE FILTERS

Once good estimates of PSDs for speech and music are de-
termined, we can obtain an estimate for the STFT of the speech
source signal x(t) using filtering. We use time-varying zero-
phase filters for reconstructing the source signal, namely Wiener
and spectral subtraction filters. We also experimented with time-
frequency shrinkage method [5] with worse results.

These filters modify the magnitude spectrum of the observed
signal and keep the phase unchanged. Keeping the phase unchanged
is important for the performance measures that we used since these
measures assume no phase change occurs between the original and
estimated speech signals.

A. Wiener filter

Wiener filter, which is optimal in the mean-squared sense, is
given by:

HWI(t, f) =
σ2

x(t, f)

σ2
x(t, f) + σ2

m(t, f)
,

where σ2
x(t, f) and σ2

m(t, f) are found using equations (3) and (4).
The STFT estimate can be found by X̂(t, f) =

HWI(t, f)Y (t, f). We reconstruct the speech signal x̂(t) by
taking the inverse STFT (that is inverse DFT followed by
overlap-add).

B. Spectral subtraction

Another popular method for signal estimation is spectral subtrac-
tion [9]. The expression for the frequency-domain filter is given by:

HSS(t, f) =

(
1− kσ

a
m(t, f)

σa
y(t, f)

)1/a

, (11)

where k controls the degree of subtraction, and a controls whether
magnitude or power spectral subtraction is used. The combination
of the parameters k and a thus controls the amount of noise
reduction. In this work we used k = 1, a = 2 corresponding
to power spectral subtraction. Similar to the Wiener filter, we can
obtain an estimate for x̂(t) using spectral subtraction filter on the
STFT of the measured signal and performing inverse STFT.

V. EXPERIMENTS AND DISCUSSION

We applied the proposed algorithm on simulated mixtures of
speech and music data at 16kHz sampling rate. For training speech
data, we used 540 short utterances from a single speaker. We left
out 20 utterances for testing. For piano music data, we downloaded
piano music from piano society web site [10]. We used 38 pieces
from different composers but from a single artist for training and
left out one piece for the testing stage. The PSD dictionaries for
speech and music data were trained using the k-means algorithm
on each source data and 64 dictionary entries were obtained for
each source. So dx = 64, dm = 64, d = 128. For the STFT, the
frame rate was 10 ms, the window size was 30 ms, a Hamming
window was used and the FFT was taken at 512 points. The test
data was formed by adding random portions of the test music file
to the 20 speech utterance files at different speech to music ratio
(SMR) values in dB. The audio power levels of each file were
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Figure 1. Source/distortion ratio SDR without using continuity and
sparsity priors, using ideal Wiener filter,and ideal SS filter. Ideal means,
we know the exact power spectral densities σ2

x(t, f) and σ2
m(t, f).

found using the “audio voltmeter” program from the G.191 ITU-T
STL software suite [11]. For each SMR value, we obtain 20 test
utterances this way.

Performance measurement of the separation algorithms were
done using metrics introduced in [8]. Projection of the predicted
signal onto the original speech signal is termed as the target signal.
Source distortion ratio (SDR) is defined as the ratio of the target
energy to all errors in the reconstruction. Source interference ratio
(SIR) is defined as the ratio of the target energy to the part of the
error due to the music signal only.

In Figure 1, we show the results of applying Wiener and spectral
subtraction filters for the ideal case of knowing the source PSDs
exactly. These results indicate an upper bound on the performance
using these filters. In practice of course, we need to estimate the
source PSDs and use them in deriving the adaptive filters. Also
in Figure 1, we show the baseline results for source speech signal
reconstruction when no priors (γ = β = 0) are used. The results
show that, for the ideal case, Wiener filter works best across all
SMR values. Baseline results indicate that Wiener filter is better
for SMR < 10 where spectral subtraction is slightly better for
larger SMR values. Due to these results, we used Wiener filter for
the rest of the experiments where we explore the effects of sparsity
and continuity priors.

We experimented with applying different prior parameters, γ
and β, for our reconstructions. We fixed the value of e = 1.01.
The SDR and SIR results are presented in Table I and Table II
respectively.

When no continuity prior was used (β = 0), we obtained
improved SDR results using γ values of 10 and 102. γ = 102

seems better for larger SMR values. However, the SIR value is
reduced as compared to no prior information as shown in Table II.
So, we get improvement in SDR at the expense of a reduction in
SIR. So, using sparsity priors reduces artifacts (r(t)) dramatically
but slightly increases music interference in the estimated speech
signal.

Next, to find the best value of the continuity prior, we set γ = 0



Table I
SOURCE/DISTORTION RATIO IN DB USING WIENER FILTER.

SMR β =0 γ =0 γ =10−2 γ =10 γ =100
dB γ =0 γ =1 γ =10 γ =102 γ =103 β =10−3 β =10−2 β =0.1 β =1 β =10−2 β =10−2 β =10−2

-5 3.78 3.79 3.91 2.52 -1.93 3.78 3.78 3.86 3.57 3.78 3.90 2.51
0 6.87 6.92 7.07 6.01 1.95 6.87 6.9 6.9 6.08 6.91 7.10 6.05
5 7.58 7.66 8.07 7.94 3.87 7.58 7.62 7.58 6.74 7.6 8.06 7.81

10 8.23 8.32 8.9 9.86 5.59 8.23 8.26 8.19 7.23 8.28 8.9 9.82
15 8.65 8.82 9.77 11.51 5.96 8.64 8.67 8.58 7.52 8.67 9.77 11.35
20 8.86 9.04 10.37 12.18 6.39 8.87 8.89 8.77 7.68 8.91 10.39 12.20

Table II
SOURCE/INTERFERENCE RATIO IN DB USING WIENER FILTER.

SMR β =0 γ =0 γ =10−2 γ =10 γ =100
dB γ =0 γ =1 γ =10 γ =102 γ =103 β =10−3 β =10−2 β =0.1 β =1 β =10−2 β =10−2 β =10−2

-5 19.57 19.28 18.6 14.88 4.34 19.55 19.47 19.04 15.44 19.49 18.55 14.86
0 22.34 21.76 18.42 13.19 8 22.35 22.37 22.06 19.74 22.34 18.4 13.4
5 23.44 22.19 18.33 13.94 10.64 23.42 23.49 23.25 21.41 23.49 18.31 13.85

10 24.8 22.89 18.41 16.81 15.69 24.8 24.8 24.58 23.03 24.75 18.45 16.65
15 28.03 24.27 20.97 21.62 21.29 28.02 28.07 27.85 26.18 28.04 20.91 21.66
20 30.01 24.92 24.36 25.74 25.74 29.98 30.02 29.8 28.43 29.93 24.31 25.59

and experiment with different values of β. We obtain small but
consistent improvements in SDR and SIR values when using β =
10−2 as shown in Tables I and II.

Finally, we combine the most promising values for γ and β
to obtain combined performance results using both continuity and
sparsity priors. We can improve the SDR value about 4 dB in
some cases using the prior information. The SIR value can be also
improved slightly around 0.05 dB using prior information.

VI. CONCLUSION

In this work, we studied semi-blind speech-music separation
using sparsity and continuity priors. We analyzed how much we
can improve the separation process by changing the values of
the sparsity and continuity priors parameters. In addition, we
experimented with applying different separation algorithms, like
Wiener filter, and spectral subtraction to mixture signals with
different speech to music power ratios (SMR). We introduced
a new and easy to implement algorithm for source separation.
We obtained some improvement in speech distortion measure by
using sparsity information. We have observed that the continuity
prior improved the performance only slightly. This shows that
neighboring frames may not have highly correlated parameters. In
the future, we may obtain better improvement by considering the
probability of one set of parameters in one frame following another
set of parameters in the following frame in the training data (using
n-gram statistics).
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