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Abstract
Feature extraction is an essential first step in speech recog-

nition applications. In addition to static features extracted from
each frame of speech data, it is beneficial to use dynamic fea-
tures (called∆ and∆∆ coefficients) that use information from
neighboring frames. Linear Discriminant Analysis (LDA) fol-
lowed by a diagonalizing maximum likelihood linear transform
(MLLT) applied to spliced static MFCC features yields impor-
tant performance gains as compared to MFCC+∆+∆∆ features
in most tasks. However, since LDA is obtained using statistical
averages trained on limited data, it is reasonable to regularize
LDA transform computation by using prior information and ex-
perience. In this paper, we regularize LDA and heteroschedastic
LDA transforms using two methods: (1) Using statistical priors
for the transform in a MAP formulation (2) Using structural
constraints on the transform. As prior, we use a transform that
computes static+∆+∆∆ coefficients. Our structural constraint
is in the form of a block structured LDA transform where each
block acts on the same cepstral parameters across frames. The
second approach suggests using new coefficients for static, first
difference and second difference operators as compared to the
standard ones to improve performance. We test the new algo-
rithms on two different tasks, namely TIMIT phone recognition
and AURORA2 digit sequence recognition in noise. We ob-
tain consistent improvement in our experiments as compared to
MFCC features. In addition, we obtain encouraging results in
some AURORA2 tests as compared to LDA+MLLT features.

1. Introduction
One of the main components in a pattern recognition system
is the feature extractor. Feature extraction is an important step
for speech recognition since the time-domain speech signal is
highly variable, thus complex linear and nonlinear processing
is required to obtain low-dimensional and reasonably less vari-
ant features. Speech signal is partitioned in time into overlap-
ping frames and static features are obtained by processing each
frame separately. It has been known that using dynamic features
is also useful in speech recognition [1]. These dynamic features,
called∆ and∆∆ features, are obtained by taking first and sec-
ond difference of static features in a neighborhood around the
current frame.

Linear discriminant analysis (LDA) applied to spliced static
features attempts to find a transform that will extract the dy-
namic information from the neighboring static features auto-
matically. The criterion is to choose transformed dimensions
that retain most of the discriminating information. LDA as-
sumes each class has the same within class covariance. Het-

eroscedastic LDA [2] enables one to model each class with a
different within class covariance matrix. LDA transform works
best when a diagonalizing maximum likelihood linear transform
(MLLT) [3] is applied afterwards to rotate the axes so that the
classes have more diagonal covariances. For (diagonal) HLDA,
MLLT is not required since it attempts to solve both dimension
reduction and diagonalization problems in a single step [2].

In this paper, we introduce regularization methods for LDA
and heteroscedastic LDA (HLDA) transforms. We have devel-
oped two methods. One is based on a Bayesian framework for
transform coefficients. The second one is based on constraining
the LDA transform structure. In section 2, we introduce and de-
rive the solution for the Bayesian HLDA method. We describe
the block structured LDA method in section 3. In section 4,
we present our experimental results on TIMIT and AURORA2
databases. Finally, we state our conclusions in section 5.

2. Bayesian HLDA
Linear discriminant analysis is performed by maximizing
Fisher’s discriminant[4]. The solution can also equivalently be
found using a maximum likelihood formulation [2] assuming
Gaussian distributions for classes. We seek to find a square
matrix A to be applied to the feature vectors such that all the
discriminatory information is retained in the firstp dimensions
after transformation. This is formally achieved by requiring that
the lastn− p dimensions of the transformed features share the
same mean vector and covariance matrix across all classes [2].
When all the classes are assumed to share the same within class
covariance matrix in the transformed space, we obtain the LDA
result. By allowing each class to have its separate diagonal co-
variance matrix, we arrive at the heteroscedastic LDA transform
[2]. We review the HLDA derivation below.

Let xi ∈ IRn : i = 1 . . . N be feature vectors in the
original space. Furthermore, eachxi is labeled with a class
ci = j ∈ 1, . . . , J We would like to find a transformation
y = Apx, Ap : IRn → IRp with p < n. We seek to choose
new featuresy such that most of the class-discriminating infor-
mation inx is retained iny. For maximum likelihood formula-
tion, we stackAn−p which hasn−p rows to the transformation
Ap to form the transform

A =

[
Ap

An−p

]
.

We require diagonal covariance Gaussian models for trans-
formed classes and furthermore lastn− p dimensions for each
class share the same mean and covariance matrix. We then find
A that maximizes likelihood of the training data under these



modeling constraints. The likelihood of the training data as a
function ofA can be written as follows [2, 5]:

L(A) =

J∑
j=1

Nj

2N
log

|A|2
|diag(ApW jAp)||diag(An−pTAn−p)|

where

W j =
1

Nj

∑
ci=j

(xi − µj)(xi − µj)
T

are the estimated within class covariances and

T =
1

N

N∑
i=1

(xi − µ)(xi − µ)T

is the estimated total covariance of the training data. Hereµj

are class means andµ is the overall mean.
Direct maximization of the likelihood function is not possi-

ble and we have to use iterative techniques. Since the likelihood
is not convex, iterative methods can be tricky to implement as
well. In [2], a steepest descent algorithm is used, however Gales
provides a faster row-update algorithm in [5]. We rewrite the
likelihood function using rows ofA to arrive at that derivation:

L(A) = log(aT
r cr)− 1

2

n∑
r=p+1

log aT
r Tar (1)

−1

2

J∑
j=1

Nj

N

p∑
r=1

log aT
r W jar,

whereaT
r is therth row of A 1 andcT

r is the cofactor ofaT
r .

Note that the first term can be written using any rowr.
Our goal in this section is to derive a Bayesian estimation

formula forA where we assume there is a prior distribution of
the matrix entries inA. For simplicity, we assume a diagonal
covariance Gaussian prior for the HLDA matrixA. We can
write the aposteriori objective function as follows:

Φ(A) = −L(A) + 1/2

n∑
r=1

(ar − ār)
T P r(ar − ār),

whereār is the mean vector for rowar andP r is the precision
matrix (inverse covariance). This objective needs to be mini-
mized.

The gradient of the objective function with respect toar

can be computed easily as:

∇arΦ = P r(ar − ār)− cr

aT
r cr

(2)

+





∑J

j=1

Nj

N

W jar

aT
r W jar

r ≤ p

Tar

aT
r Tar

r > p
.

To solve the minimization problem, we need to set
∇arΦ = 0 and solve for eachar. This appears to be un-
tractable without using iterative methods. We use a trick similar
to the one in [5] and assume thataT

r cr, aT
r W jar andaT

r Tar

are quantities that do not change much from iteration to itera-
tion and plug in their previous values in the equation and solve
for ar easily in∇arΦ = 0. This yields the following simple
algorithm.

1All vectors are column vectors

Start withA = Ā
while not converged

for eachr = 1, . . . , n

ComputeGr =





∑J

j=1

Nj

N

W j

aT
r W jar

r ≤ p

T

aT
r Tar

r > p

Computeαr = (aT
r cr)

−1 = |A|−1

Updatear = (Gr + P r)
−1(αrcr + P rār)

end
end

Note that this approximation is somehow different than the
one in [5], however this yieldsar that are in the same direction
as the one in [5] when there is no prior (P r = 0). This is
acceptable since scaling rows ofA do not change the maximum
likelihood objective function [2].

When the within class covariancesW j are assumed to be
equal and when the commonW is estimated as the weighted
average of within class covariances, we obtain the regular LDA
solution using the above objective function [2]. The update
equations are flexible to allow for HLDA solution when dif-
ferentW j are used (withP r = 0). In its most general form,
we can use a prior for the transform matrixA and optimize the
MAP objective function using the algorithm above.

Usually, we will have a prior mean which is ap×n matrix.
In that case, we can setP r = 0 for r > p so that no prior is
used for rows greater thanp. For rowsr ≤ p, we use the same
precision matrix which is a scaled identity matrixP r = βI.
One could also experiment with different precision matrices.

As prior mean transform, there are many possibilities. We
have used the Static+∆+∆∆ (S+D+DD) transform as the prior
mean in this study. When the static features are thirteen di-
mensional and a neighborhood of seven frames are spliced to-
gether, and when for example HTK 3.2 is used with parame-
ters DELTAWINDOW=2 and ACCWINDOW=1, this amounts
to the transform (ignoring scaling of each row)

Ā =

[
0 0 0 1 0 0 0
0 −2 −1 0 1 2 0
2 1 −2 −2 −2 1 2

]
⊗ I13×13

Here⊗ denotes the Kronecker product. We know that
this transform yields reasonable results, so it makes sense use
this transform as a prior mean. However there could be other
choices such as using an LDA transform computed from a
smaller neighborhood of frames and extended to the larger
neighborhood by inserting zeroes in it. This would make sure
that the new transform does not deviate too much from the ear-
lier, smaller but possibly more reliable, transform.

A disadvantage of using a Gaussian prior is that the trans-
form computed will not be sparse even if we start with a sparse
transform as the one given above. To keep sparsity, for example
a Laplacian prior would work better. Another approach to keep
sparsity is by constraining the LDA transform to have a certain
structure, such as block structured, which we explore next.

3. Block structured LDA
Intuitively, enforcing a structure on the linear discriminant
transform matrixAp would be a good regularization technique.
For example, we could tie coefficients in matrixAp either to
other coefficients or to fixed values (mostly zero). Another op-
tion is to enforce a block structure on the linear transformAp.



In this paper, we only enforce a simple block structure, that
is we divide the original dimensions into groups and compute a
dimension reducing transform for each group. This amounts to
settingAp coordinates to zero for dimensions that are not in the
group. This structure is similar to the S+D+DD transform intro-
duced in the previous section, but would allow using different
coefficients for neighboring frames.

Implementation of such a transform is trivial. We determine
dimension groups and decide on how many lower dimensions
to reduce them to. Then, we use the corresponding rows and
columns ofW andT to compute a lower dimensional LDA
transform to achive the result. We then stack each lower dimen-
sional transform to obtainAp.

Typically, we choose a dimension group to contain the same
cepstral parameters in every frame in the spliced vector. Thus,
in a thirteen static parameter, seven spliced frame scenario, we
would be using thirteen groups of seven dimensions each. We
will be reducing each seven dimensional group to three dimen-
sions which will yield in the end a39 × 91 dimensionalAp

matrix which is highly sparse. This clearly is a way to re-
place static, first difference and second difference operator co-
efficients for each cepstral parameter. It turns out the estimated
coefficients indeed can be easily identified as being similar to
the static, first difference or second difference coefficients as
we show in the experimental results section.

4. Experimental Results
We applied the introduced methods to two different databases:
TIMIT and AURORA2.

We performed phone recognition experiments on TIMIT
database [6]. We mapped 64 phones in TIMIT transcriptions
down to 48 as in [6] for obtaining monophone models. During
performance calculations, we further mapped 48 phones down
to 39 as is typical[6].

We built tied state triphone models using different features
with 39 dimensions each. MFCC features are standard 12 cep-
stra + energy and∆ and ∆∆ dynamic features. LDA type
features are obtained by transforming 91 dimensional spliced
static MFCC features from 7 neighboring frames to 39 dimen-
sions and applying MLLT transform afterwards. In HLDA-
MAP+MLLT method, S+D+DD transform is used as the prior
mean andP r = 1000I for r ≤ p. We used blocks similar to
the S+D+DD transform in the block LDA method as mentioned
earlier. We define each tied HMM state as a class and obtain
statisticsW j andT using Viterbi aligned training data.

The results are tabulated in Table 1. We obtained the best
result using LDA+MLLT features. HLDA method should be
better than LDA theoretically when the covariances are known
exactly. However, since we estimate covariance matrices from
limited amount of data, we suspect that HLDA uses unreli-
able W j estimates and performs worse in testing. We have
tested classification performance of HLDA and LDA+MLLT
using Monte Carlo simulations and verified that indeed when
the covariances are known exactly, HLDA classifies better than
LDA+MLLT. We believe this result did not follow in the real
case due to unreliable covariance estimatesW j . More reli-
able estimates of within class covariances could be obtained by
smoothing as in regularized discriminant analysis of Friedman
[7] which is also applied to speech recognition recently [8]. The
W matrix used in LDA is more reliable since it is obtained by
averaging much more data. The Bayesian and block structured
approaches also cannot surpass LDA+MLLT performance al-
though they perform better than the MFCC baseline. We at-

Features Accuracy Correct Detection
MFCC 62.92% 80.34%
LDA+MLLT 70.59% 82.34%
HLDA 68.57% 81.49%
HLDA-MAP+MLLT 69.25% 82.07%
Block LDA 68.05% 80.46%

Table 1: Phone recognition accuracy and correct detection rates
on TIMIT test set with different features of dimension 39.

tribute these results to the fact that there is no noise and channel
mismatch between training and test data and it appears no reg-
ularization is needed to improve LDA+MLLT result.

AURORA2 is a standard database distributed by ETSI
which can be used for testing noise robust recognition algo-
rithms. The task is to detect digit sequences (from TIDIGITS
database) when different types and amounts of noise is added
to the utterances. ETSI has published an advanced distributed
speech recognition front-end (ES 202 050) that achieves very
good performace as compared to MFCC features under noise.
They are obtained by two-stage Wiener filtering of speech data
before extracting MFCC features from the preprocessed speech.
We call these features AFE features. We have performed ex-
periments on AURORA2 database using the clean training data
only.

In Table 2, we show recognition accuracy results under
differing noise conditions with various features. MFCC de-
notes MFCC features without any preprocessing, AFE is the
advanced front-end features which improves significantly us-
ing intelligent preprocessing of speech data. We have based
our LDA type features on AFE features. Each state is con-
sidered as a class similar to the TIMIT experiment. Once
again, LDA+MLLT features improve upon AFE features quite
significantly. HLDA performs much worse as compared to
LDA+MLLT, we conjecture once again that the within class co-
variances are not robust enough. For low SNR conditions, the
regularized block LDA performs better than all other methods.
This shows that the block LDA method is more robust to mod-
eling mismatches.

Finally, in Figure 1, we plot seven primary coefficients for
each cepstral parameter (on top of each other) that will multiply
each frame in the spliced vector obtained using the block LDA
method. As we can observe from the plot, the primary LDA row
for each cepstral parameter was found to be kind of a weighted
averager. Thus, block LDA replaces the static feature with an
averaged static feature. Seven secondary coefficients are plotted
in Figure 2. For eleven cepstral coefficients, these act similar to
a first difference operator, for other two coefficients, they act
similar to a second difference operator. The tertiary coefficients
(not shown) act as second difference for the previous eleven
coefficients and as first difference for the remaining two.

5. Conclusion
LDA+MLLT method works well for the two different do-
mains that we experimented with. We were able to outper-
form MFCC+D+DD features using LDA+MLLT in both test
sets. Furthermore, applying LDA+MLLT on top of ETSI ad-
vanced front end features yields consistent improvement in Au-
rora2 tests. Our attempts at regularizing the LDA transform
were promising but not consistently better than the unregular-
ized case. We only obtained limited improvement for the AU-
RORA2 task using the block LDA method in extremely noisy



Features/SNR(dB) clean 20 15 10 5 0 -5
MFCC 99.0 94.1 85.0 65.5 38.6 17.1 8.5
AFE-MFCC 99.1 98.0 96.5 92.4 82.3 58.2 27.2
LDA+MLLT 99.3 98.3 97.1 93.4 83.1 58.7 27.2
HLDA 98.4 96.6 94.4 85.4 60.4 27.8 12.1
HLDA-MAP+MLLT 99.3 98.2 96.8 92.8 81.4 54.9 22.3
Block LDA 99.2 97.9 96.6 92.8 83.0 60.3 28.8

Table 2: AURORA2 clean training speech recognition accuracy rates under different SNRs using various features of dimension 39. The
results are averaged over all test sets A, B and C containing all ten noise types. Total reference word count is 32883 for each SNR type.

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 1: Primary “block structured LDA” coefficients for 13
cepstral coefficients

conditions.
Block LDA method appears to compute static, first dif-

ference and second difference feature parameters by optimally
determining the weights of cepstral coefficients across frames.
The weights are obtained by maximizing the Fisher’s discrimi-
nant. This method is a fast and straightforward way to optimize
them. In both our experiment domains, we obtain consistent
improvement by using block LDA method over using standard
weights.

The HLDA-MAP method is a generalization of the regular
HLDA and LDA methods, however it is not easy to determine
appropriate prior parameters for optimal performance. We be-
lieve the suboptimal results we obtained can be improved by
using more appropriate prior parameters and improved within-
class covariance estimates via smoothing [8]. The prior param-
eters could be task dependent as well. Further investigation into
regularization methods and parameter estimation is required to
improve the performance of the dimension reducing discrimi-
native transforms for speech recognition.
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