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ABSTRACT

In large vocabulary continuous speech recognition
(LVCSR) for agglutinative and inflectional languages, we
encounter problems due to theoretically infinite full-word
lexicon size. Sub-word lexicon units may be utilized to
dramatically reduce the out-of-vocabulary rate in test data.
One can develop language models based on sub-word
units to perform LVCSR. However, it has not always been
beneficial to use sub-word lexicon units, since shorter
units have higher acoustic confusability among them and
language model history is effectively shorter as compared
to the history in full-word language models. To reduce the
aforementioned problems, we propose using the longest
possible sub-word units in our lexicon, namely half-words
and full-words only. We also incorporate linguistic rules
of half-word combination into our statistical language
model. The language constraints are represented with a
rule-based WFSM which can be combined with an N-gram
language model to yield a better and smaller language
model. We study the performance of the proposed system
for Turkish LVCSR, when the language constraint takes
the form of enforcing vowel harmony between stems and
endings. We also introduce novel error-rate metrics that
are more appropriate than word-error-rate for agglutinative
languages. Using half-words with a bi-gram model yields a
significant reduction in word-error-rate as compared to a
bi-gram full-word model. In addition, combining a tri-
gram half-word language model with the vowel-harmony
WEFSM improves the accuracy further when rescoring the
bi-gram lattices.

1. INTRODUCTION

Hidden Markov Models are used in modern speech
recognition systems for acoustic modelling. Statistical or
rule-based language models can be used in order to
represent the recognized language. If the speech
recognition application permits the use of a limited-
vocabulary hand-crafted grammar, then high recognition
accuracies may be achieved. In such applications, when

the speaker utters a sentence which is not covered by the
grammar, the system cannot recognize the sentence. In a
system-initiative spoken dialog system, if the user can be
directed with well-prepared questions, a dynamic limited
grammar system may achieve great performance.
However, for mixed-initiative systems and for other
applications such as dictation and broadcast news
transcription, a large vocabulary system with a statistical
grammar (language model) is required. Such systems are
called large vocabulary continuous speech recognition
(LVCSR) systems.

N-gram language models for LVCSR achieve acceptable
performance for English. In English dictation systems, an
accuracy of 90-95% may be achieved. On the other hand,
in agglutinative and inflectional languages like Turkish,
Finnish, Czech, etc., LVCSR is problematic when only the
words in the language are used as lexicon units. Total
number of words is very high and any vocabulary size
becomes inadequate [1-5]. A lexicon that contains sub-
word units may be utilized as a solution to the coverage
problem [1-7]. These sub-word units are typically
morphological components of words or syllables in the
language [6-7].

Despite solving the coverage problem, using sub-word
units in LVCSR for agglutinative languages does not
always achieve acceptable performance [1,4,8]. A reason
for the bad performance is the shortness of sub-word units
as compared to full-words. As expected, shorter units
become more acoustically confusable with each other.
Also, LVCSR decoders have a tendency to insert short
units into wherever they can since matching short units to
acoustic data is easier. Another reason for the
performance drop in sub-word systems is the smaller
effective language model history size while using N-gram
language models. In a sub-word system, the language
model effectively uses a shorter history as compared to a
full-word based system. The shorter the sub-words, the
shorter the effective history one uses in an N-gram
language model. As a result, appropriately choosing sub-
word units is crucial for LVCSR systems. The main
criteria in this choice should be to cover the words in the



language as much as possible while maintaining small
acoustic confusability between units not to decrease the
recognition rates. In other words, unnecessary and short
units should not be inserted into the lexicon of the speech
recognizer while words in the language are covered with
an acceptable rate. In this paper, we propose some new
ideas to construct a lexicon of half-word and full-word
units for an LVCSR system in Turkish.

Another potential problem while using sub-word units in
speech recognition is that, the recognizer may output a
sequence of sub-words that may not form a legitimate
word sequence in the language. In this paper, we propose
to use a rule-based weighted finite state machine (WFSM)
to accept only allowable sub-word unit sequences. This
WEFSM can be composed with an N-gram language model
to improve the overall language model and reduce its size.
In speech recognition, modelling the language constraints
with a WFSM is a new approach and with this approach
not only language model size can be decreased but also
recognition rates can be improved.

This paper is organised in the following way. In section 2,
we review N-gram language models. In section 3, we
discuss ways to split words and reveal our choices for
splitting. We provide details of our new language model
which is a composition of an N-gram WFSM and a rule-
based WFSM in section 4. Section 5 discusses new
evaluation metrics for LVCSR of agglutinative languages.
In section 6, the experimental setup and results are
provided. The conclusions and future plans are
summarized in the final section.

2. STATISTICAL LANGUAGE MODELS

A statistical language model enables to compute the
probability of a sentence in a language. If we assume that a
sentence is constructed from words, the sentence
probability can be written as follows [9]:

PW)=PwW,,W,,...w,) = HP(wi [ Wiy W)
i=1

In this equation W represents the sentence and each w;
represents a word in the sentence. N-gram language
models approximate each term in the right hand side of the
equation by using only N-1 words in the history. The
equation becomes:

n
PW)~ HP(Wi | Wi Wiy)

i=1
Usually, a large text corpus is used to calculate each N-
gram probability. Smoothing techniques are used to avoid
assigning zero probabilities for unseen N-grams [9].
As indicated in the introduction section, since the number
of words in Turkish is very large, the use of words as the
lexicon entries in an N-gram language model is not
reasonable. In this case, utilization of sub-word units will

be necessary and beneficial. When sub-word units are
used, we replace the sequence of words in a sentence with
the corresponding sequence of sub-words and perform N-
gram language modelling using sub-words as basic units
instead of full-words.

3. SPLITTING WORDS INTO SUB-WORDS

There is more than one way to split a word into its parts,
especially in Turkish and other agglutinative languages.
Some splitting options can be listed as follows:
1. Full-word (no split),
2. Stem + ending,
3. Stem + morphl + morph2 + ...,
4. Syllabifying.
In this paper, we will progressively use first, second and
fourth techniques in order to split a word into its parts. In
forming a hybrid lexicon, a word will be included in the
vocabulary as a full word if it can be found among most
frequent stems. If this is not possible, we will try to split
the word into two half-words as stem + ending. If this split
is also not possible, then the word will be syllabified. We
will not use the third choice above, since this splitting
procedure which can be seen as a morphological analysis
of the word will increase acoustic confusability by
unnecessarily choosing small units.
After this splitting procedure, speech recognizer’s lexicon
will include the following units:
1. Stems (used as a full-word or a half-word).
Examples: ev/house, sokak/street, his/feeling.
2. Endings (used as final half-words only).
Examples: -ler, -lar, -lerde, -imizin, -imizdekiler.
3. Syllables. Examples: <a>, <e>, <de>, <bak>,
<kir>, <trak>,<ler#>.
Some syllables can also act as single-syllable stems, like
“bak/look”. In order to distinguish the stem “bak” from
syllable “bak”, an extra symbol is needed. Syllable units
are contained within angular brackets to avoid confusion.
We also append a “#” symbol to indicate word-final
syllables to enable conversion of syllable sequences to
word sequences at the output. Similarly “-” symbol is
added in front of endings in order to prevent confusion
with other units and to enable word reconstruction at the
output
We split words into stem + ending parts by using a two-
level morphological analyzer [10]. When there is more
than one morphological analysis possible, we choose the
one with the longest stem. We also require that the ending
part is at least 2 phonemes long to avoid using acoustically
confusable short endings. Our final lexicon contains all
frequent stems, endings and syllables in the training data.



4. ANOVEL SUB-WORD LANGUAGE MODEL

N-gram language models can be represented by a weighted
finite state machine (WFSM) [11]. Software packages are
available to train N-gram language models and convert
them into WFSMs [12]. The resultant N-gram WFSM is
usually large and complex. The weights in this WFSM
correspond to N-gram probabilities mentioned in section 2
and they are learned from text data. In order to obtain
reliable probabilities, a text corpus containing millions
even billions of words is required. This text corpus should
be cleaned, tokenized and checked for typos before it can
be used in N-gram language model training. Since this
cleaning procedure is usually not perfect, some noise is
always left in the training data and this noise causes
imperfect weights in the WFSM. Also, to avoid zero
probabilities and to enable detection of word sequences
that were never seen in training data, linguistically
impossible word sequences receive a small but non-zero
probability in the language model. If acoustic evidence
strongly prefers a word sequence that was never seen in
training data, that sequence can be emitted by the decoder.
When only an N-gram statistical language model is used in
a sub-word recognizer, the decoder can output
linguistically impossible sentences in the language of
interest. For example when the hybrid lexicon introduced
in the previous section is used; decoder could output such
a sentence in Turkish LVCSR:

o <a> <lis#> ev -inde -ler <a> <vi> <za#> bul —
indirmayi sev -mez.

Assume that the correct utterance is “Alice evinde avize
bulundurmay1 sevmez. / Alice does not like to have a
chandelier in her house.” There are linguistically
impossible sub-word sequences in the decoder output.
Errors in this recognition result can be listed as follows:

1. Two endings consequently recognized. Example:
“~inde —ler” is meaningless.

2. The ending following a stem does not obey the
Turkish vowel harmony rule. Example: “bul —
mdirmayi1”, should be “bul —undurmay1”.

3. Although the word “avize/chandelier” is included
in the lexicon of the speech recognizer, a
sequence of syllables similar to the word with a
better acoustic match to the acoustic data may be
preferred, such as “<a> <vi> <za#>".

In fact when the statistical language model is well trained,
these types of problems will be reduced, but never avoided
totally. In order to remove the problems listed above we
are proposing to use a new rule-based WFSM that accepts
only linguistically acceptable sub-word sequences. The
main role of the WFSM is to enforce vowel harmony
between stems and endings. It also enforces the correct
ordering of stems and endings to form a valid word
sequence.

The rule based WFSM is depicted in Figure 1. The WFSM
contains parallel alternative branches to form a single
allowable word that obeys vowel harmony rule in Turkish
and accepts a sequence of such words.

All stems

Stems with BR
type final vowel

Endings for
i BR stems.

cl

Stems with BU i
L Endings for

type final vowel BU stems
) 4
Stems with FR N Endings for >—
type final vowel FR stems i
Stems with FU Endings for
ch type final vowel > FU stems

Syllable sequence acceptor —

Figure 1 Rule-based WFSM that accepts sub-word
sequences that obey vowel harmony in Turkish.

To realize the WFSM, we form four distinct classes of
stems depending on their final vowel type. The vowel type
depends on the position of the tongue (front (F) or back
(B)) and lips (rounded(R) or un-rounded (U)). In Turkish,
there are eight vowels “a, 1, e, 1, 0, u, 0, G”. The first two
are back and un-rounded (BU), the next two are front and
un-rounded (FU), followed by two back and rounded (BR)
and two front and rounded (FR) vowels. In Turkish
language, when attaching suffixes to stems, vowels of
suffixes may change according to the last vowel of the
stem they are attached to. This property is called vowel
harmony. For example suffixes —lar and —ler both make
plural nouns, but we have to choose the one that has vowel
harmony with the preceding stem. There are some rare
exceptions to this rule when for example a palatal “1” is
the last consonant in the stem (examples: alkol, ampul,
tuval). In that case, even if the last vowel is a back vowel,
it acts as a front vowel. We incorporate such exceptions
into our rules easily by including such stems into the front
vowel classes instead of the back vowel classes. The
allowable endings that attach to the class of stems can be
found from the training data. We group together all
endings that were attached to a class of stems in the
training data. Even though the stem classes are distinct,
there is overlap between ending classes since some
suffixes do not change form according to vowel harmony
(-ki, -ken) and some suffixes only change form according
to being front or back regardless of the roundness attribute
(-lar or —ler, -da or -de). The ending classes are corrected



by expert intervention when necessary to avoid errors due
to noise in training data.

In Figure 1, the weights in the branches are shown as
cl,...,c6. By using a small weight for the syllable branch,
the probability of choosing this branch can be decreased.
Thus, the third problem listed above will not be observed
too frequently.

When WFSM shown in Figure 1 is composed with an N-
gram WFSM, a new WFSM is obtained which not only
uses the statistical information obtained from a large text
corpus but also enforces vowel harmony and a
linguistically correct half-word order. In the combined
WEFSM, decoder will never produce a recognition result
which is not accepted by the rule based WFSM in Figure
1, effectively setting their language model probabilities to
Zero.

The WFSM displayed in Figure 1 may also be used in a
syllable-based speech recognition experiment when the
lexicon only contains syllables. When an N-gram syllable
language model is composed with the rule based WFSM, a
more powerful language model can be obtained since this
language model will block meaningless syllable
sequences. When such a rule based WFSM is not used,
syllable-based experiments usually generate meaningless
syllable sequences. As a result, a big improvement can be
expected when such a WFSM is used in the language
model.

In some of our experiments, we set the weight for the
syllable branch to 0 (c6=0 in Figure 1). This effectively
disables syllable units and we use only half-words and
full-words in recognition. In that case, we call our system
a “half-word system”, since we only use full or half-words
as lexicon units. When we set all cl,c2,...,c6 to be equal,
we call this system “hybrid system” since syllable
sequences are also possible in addition to half-word
sequences. In the test-set that we worked with, half-word
system yielded a better recognition result as compared to
the hybrid system. This is due to the fact that we did not
have a coverage problem with the half-word system, so we
did not need the syllables to get increased coverage. We
also did not optimize the weights cl through c6 in our
hybrid experiment and used equal values for them. We
expect better results with the hybrid system when we
optimize the weights and when we test our system on
different test-sets which have reduced coverages while
using only half-words. We present our detailed results in
section 6.

5. EVALUATION METRICS

Although word-error-rate (WER) is a well-accepted
method for evaluating speech recognition performance, for
agglutinative languages like Turkish, we feel the need to
define new metrics that depend on recognizing sub-words.
Occasionally a recognizer may recognize the stem of the

word correctly but fail in recognizing the ending part.
When we use WER as a metric, we count this as a single
substitution error. However since the stem of the word is
recognized correctly, we may wish to count it as one
correct recognition and one substitution error due to
misrecognizing the ending. Another alternative is to
remove the ending half-words and calculate error-rate
using only the stems. This also gives an idea about the
accuracy of the speech recognition system in recognizing
the main part (stem) of the words which is the most
semantically informative part.

So, we use three different metrics in evaluating our speech

recognition systems.

1. WER: word-error-rate. We form word sequences
from our recognized sub-word sequences (this is not
usually ambiguous since a stem + ending is a word
and a syllable sequence that ends in a syllable with #
symbol forms a word). For statistical-only language
models, we may have un-allowed sequences of sub-
words. In those cases, we combine parts that we can
combine to form words and the parts that cannot be
combined are left as is.

2. HWER: half-word-error-rate. We re-split the words
into two (stem + ending) in both reference and
recognized (hypothesis) word sequences consistently.
We use the same splitting algorithm as we used during
language model training with one exception that the
ending part is allowed to be of length one character
(one phoneme) in this case. We calculate the error-
rate among these recognized half-words.

3. STER: stem-error-rate. After dividing the words into
two parts, we delete the second part (if the second part
exists) for both the reference and the hypothesis texts
and calculate the error-rate among stems only.

In our experiments, we provide error-rates using the three
metrics introduced above.

6. EXPERIMENTS AND RESULTS

To obtain meaningful LVCSR results, we collected ample
amount of acoustic and text data in Turkish. Although
minimal as compared to English LVCSR systems, our
acoustic and text data are the largest amount of data (as we
know of) used in Turkish LVCSR to date.

Our acoustic data consists of read speech (16 kHz, 16 bits)
collected using a headset microphone (Plantronics Audio
50) connected to a laptop. 34 of 37 hours of speech data is
used for training Hidden Markov Models and 3 hours of
the data is set aside for testing. 367 different speakers with
equal gender distribution were recorded. All speakers read
around 120 sentences among about 1000 phonetically
balanced sentences. HTK 3.2 is used to train tri-phone
HMM models with tied states [13]. Twelve Gaussian
mixtures were used for modelling each state emission



probabilities. The test data we used in this paper contains
88 different sentences with 717 words in the sports news
domain read by 16 different speakers. The topics of the
sentences were chosen from sports news domain since our
language modelling text data contains sports news data as
well.
We collected text data with 5.5 million different sentences
and 81 million words, mostly from internet news web sites
and e-books in Turkish. The news data contains daily life,
sports news and columnists. We obtained 1,170,526
unique words in this text data. The large number of unique
words in our text data is due to the agglutinative nature of
Turkish language. A bi-gram language model is trained
from the text training data. Also, a tri-gram language
model is trained from a 2 million sentence subset of the
training data due to computational reasons.
We have used four different lexicon types in our speech
recognizer during initial experiments:
1. Word lexicon: only most frequent 30000 words in
the lexicon
2. Syllable lexicon: only most frequent 2000 syllables
in the lexicon
3. Half-word lexicon: most frequent 10000 stems and
3000 endings
4. Hybrid lexicon: most frequent 18000 stems, 3000
endings 2000 and syllables
For all lexicon types, we also manually added, to our
acoustic dictionary, stems that are in a large group of test
sentences that contain our test data (large test sentences
contain literary novel and sports news domains) but are
not in the most frequent stems in the training data. This
procedure added 132 extra entries to the word lexicon, 73
extra entries in the half-word stem lexicon and 53 extra
entries in the hybrid stem lexicon. Assuming that the
morphological productivity is the main problem causing
high out-of-vocabulary (OOV) rates, we performed such a
manual adjustment to remove OOV words due to unknown
stems. We confirmed that the OOV rates for syllable, half-
word and hybrid lexicons are indeed much lower than that
for the word lexicon in our large group of test sentences as
shown in Table 1.

Lexicon Vocabulary size OOV rate
Word 30132 18.16%
Half-word 13073 1.66%
Syllable 2000 6.04%
Hybrid 23053 0.66%

Table 1 OOV rates for different lexicon types in a larger
test-set after adding test stems to the dictionary.

Unit recognition error-rates are obtained for each lexicon
type using a bi-gram language model in HTK [13]. The

results are presented in Table 2'. However, these results
do not provide a direct comparison between different
lexicon types since units are different in each recognizer.
We observe in this table that the hybrid lexicon yields
worse results as compared to the half-word lexicon, so for
the following experiments, we do not provide results for
the hybrid lexicon.

Lexicon Sentence Unit Unit

Type correct % correct % | accuracy %
Word 11.93 60.57 47.05
Syllable 2.85 54.18 53.11
Half-word | 10.70 60.57 57.88
Hybrid 10.01 55.96 53.27

Table 2 Unit recognition rates using bi-gram models

In Table 3, we provide a better comparison among word,
syllable and half-word lexicon systems by comparing their
comparable WER, HWER and STER performances’.
These results clearly show that half-word-based language
models are superior to word-based language models.
Syllable-based language models provide the worst
performance since syllables are not constrained to form a
valid word when using a statistical language model.

Lexicon | Sentence | WER HWER STER
Type correct %

Word 11.93 52.95 42.18 43.21

Syllable | 2.85 68.80 64.63 62.71

Half-word | 11.99 45.11 40.12 36.30

Table 3 Comparable percentage error-rates for different
lexicon types using a bi-gram language model.

As it can be observed from the error-rates, best results are
obtained using a half-word lexicon with a bi-gram
language model. To further improve the results, we
perform lattice-rescoring experiments on the half-word
system to apply the rule-based vowel harmony WFSM and
a tri-gram WFSM to see how much improvement can be
obtained. We obtain lattices using the half-word bi-gram
system for three randomly chosen speakers from the test-

! After the paper was submitted, we observed that we can
obtain better results for word and hybrid lexicons by
adjusting decoding parameters such as grammar weight.
Please see Osman Buyuk’s Masters Thesis for new results.
> The sentence correct results for half-word lexicon in
Tables 2 and 3 are different due to word split mismatches
in hypothesis and reference transcripts in the half-word
experiment. In Table 3, the mismatches are automatically
corrected by consistently re-splitting words.



set. Rule based WFSM is obtained by setting c6=0 (no
syllable lexicon) in Figure 1. Lattice rescoring experiment
is depicted in Figure 2.

The results of the lattice-rescoring experiment are shown
in Table 4. The last row shows the best result than can
theoretically be attained by rescoring the lattice. Here, we
see that tri-gram language modelling indeed improves the
results significantly. Rule-based vowel harmony WFSM
still improves upon tri-gram language model performance,
although the additional gain is around 3% relative.
Applying rule-based WFSM directly to rescore bi-gram
lattices results in a bigger improvement than applying it
after tri-gram rescoring since bi-gram is suboptimal and
returns more half-word sequences that are disallowed
according to the linguistic rules.

Speech Input

Speech recognizer

Bi-gram lattice
‘WFSM Composition

[ Rule-based WFSM in Figure 1 ]

QO
[ Higher order language ]

model (trigram)

v

Output re-scored lattice
and new best-path

Figure 2 Lattice rescoring paradigm used in testing rule-
based WFSM and tri-gram language models.

Language Model Sentence | WER | HWER | STER
used with half-word correct %

lexicon

Bi-gram 11.74 40.51 | 36.51 31.53
Vowel harmony 11.79 39.66 | 34.89 30.26
WFSM (Rule based)

Tri-gram 19.70 33.06 | 30.19 25.83
Rule-based and 19.77 32.54 | 29.10 25.28
Trigram

N-best bi-gram 31.44 21,25 | 19.20 15.14
(oracle)

Table 4 Percentage error-rates obtained by various
language models

7. CONCLUSION AND FUTURE WORK

We have introduced novel methods for determining sub-
word lexicons and developing language models for large
vocabulary continuous speech recognition for Turkish
language. The techniques should be applicable to other

agglutinative or inflectional languages as well. The
combination of a rule-based WFSM that enforces correct
half-word order and vowel harmony between stems and
endings and a tri-gram language model achieves
encouraging LVCSR performance on a sports news
domain speech corpus.

We plan to improve language modeling for Turkish by
exploring and improving the hybrid lexicon language
models. We also plan to explore class-based language
models suitable for the Turkish language in the future.
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