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ABSTRACT
Kernel Discriminant Analysis (KDA) has been success-

fully applied to many pattern recognition problems. KDA
transforms the original problem into a space of dimension
N whereN is the number of training vectors. For speech
recognition,N is usually prohibitively high increasing com-
putational requirements beyond current computational ca-
pabilities. In this paper, we provide a formulation of a sub-
space version of KDA that enables its application to speech
recognition, thus conveniently enabling nonlinear feature
space transformations that result in discriminatory lower di-
mensional features.

1. INTRODUCTION

Speech recognition can be cast as a pattern classification
problem where we would like to classify an input acoustic
signal into one of all possible sentences. However, the num-
ber of classes or the number of all possible sentences are ex-
tremely high, so that it is unreasonable to solve the problem
as a regular classification problem. Thus, we use dynamic
generative sub-unit models (HMMs) and language model-
ing to model the probability of sentences and solve a huge
search problem instead. Still, inherent to speech recognition
is a desire to be able to accurately classify acoustic frames
into subunits of sentences, typically words, syllables, word
states, phones or phone states depending on the modeling
of the problem. The idea is that, if we are able to classify
acoustics into these subunits well, the sentence recognition
is going to be more accurate as well.

For this reason, it is reasonable to borrow pattern clas-
sification techniques to help in speech recognition. Linear
Discriminant Analysis (LDA) is one such technique that can
be used to extract relevant features from speech signals that
discriminate well between sub-unit classes. The problem is
usually cast as a dimension reduction problem where many
candidate features are pulled together and a rectangular lin-
ear transformation is found where the resultant feature vec-
tor has “reasonable” or “small” dimensions, yet it carries the
most discriminative information to separate classes well.

LDA has been used in speech recognition extensively.
LDA is limited to “linear” projections of original data space.
Linear projections are limited in their power to discriminate
between classes that are not linearly separable in the origi-
nal feature space. It is plausable that classes are not linearly
separable, but nonlinearly separable in the original space.
In this case, it is possible to transform original data space
to a even higher dimensional spaceF (possibly infinite di-
mensional) where the classes are linearly separable. Kernel
versions of LDA and principal component analysis (PCA),
called KDA and KPCA for short, enables this transforma-
tion without having too much extra computation.

Kernel-based machine learning and pattern classifica-
tion techniques have achieved considerable success recently.
Among those are support vector machines (SVM) and ker-
nel versions of PCA and LDA [1]. Already, kernel versions
of LDA and PCA are very popular among pattern classifica-
tion community. These methods enable to extract features
or decision rules that have nonlinear boundaries. The meth-
ods achieve this with a slight increase in computation by us-
ing the kernel trick. That is, if the algorithm uses only scalar
products in the transformed spaceF , that scalar product can
be computed using kernels that use only original features
and do not require actual computation of high dimensional
features themselves in spaceF .

In this paper, we apply a subspace version of KDA to
speech recognition. One trouble for KDA for speech recog-
nition is that the original derivation requires computation of
features in anN -dimensional space whereN is the number
of training samples. This value is typically very high for
speech recognition; e.g. 6000 samples per minute of audio.
In speech recognition, it is possible to use more than 200
hours of audio to train a system. Thus, it becomes impracti-
cal to use KDA directly. So, we propose a subspace version
of KDA and evaluate its performance in this paper.

First, we introduce LDA in section 2. We describe the
subspace version of KDA (SKDA) in section 3. Appli-
cation of SKDA to speech recognition problem and pos-
sible subspaces are analyzed in section 4. In section 5,
we present results of phone recognition experiments on the



TIMIT database. We conclude in section 6 with a summary
and suggestions for future work.

2. LINEAR DISCRIMINANT ANALYSIS

Consider a classification problem with multiple classes and
multiple features. While Principal Component Analysis (PCA)
finds projections of features that are efficient for represen-
tation of data, linear discriminant analysis (LDA) or Fisher
Discriminant (FD) seeks projections of data that are effi-
cient for discrimination between classes.

Letx ∈ IRn be a feature vector in the original space. We
would like to find a transformationy = θx, θ : IRn → IRp

with p < n. We seek to choose new featuresy such that
most of the class-discriminating information inx is retained
in y. This dimension reduction will also help us battle “the
curse of dimensionality” and train statistical models more
efficiently due to dimension reduction.

Let {xi ∈ IRn}1≤i≤N denoteN training samples each
labeled with a class labelli ∈ {1 . . . K}. LetNk =

∑
li=k 1

be the number of training vectors in classk. Then,
∑K

k=1 Nk =
N is the total number of training samples. We define the
following entities:
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1
N

N∑
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xi, µk =
∑
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xi,
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1

Nk

∑
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xix
T
i − µkµT
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whereµ is the overall mean,µk is the sample mean for class
k andΣk is the covariance matrix for classk.

In LDA, we define between and within class scatter ma-
tricesB andW respectively as follows:

B =
K∑

i=1

Nk(µk − µ)(µk − µ)T ,

W =
K∑

i=1

NkΣk. (1)

Here, the determinant ofB indicates how much class-means
are separated from each other in the feature space and the
determinant ofW indicates the average variation within each
class. If the features are transformed using a linear transfor-
mationθ, then the between and within class covariance ma-
trices in the transformed feature space becomeθBθT and
θWθT respectively.

LDA minimizes the ratio of determinants of between
class and within class scatters after transformation. We choose
the transformation̂θ that minimizes the objective function

θ̂ = argmax
θ

|θBθT |
|θWθT | .

There is a closed form solution to the above optimiza-
tion problem. Simply, the columns of the optimum trans-
form θ are given by the eigenvectors corresponding to the
largestp eigenvalues of the generalized eigenvalue problem
Bv = λWv [2].

Thus, finding the LDA transform amounts to gathering
the statisticsB andW from training data and solving the
generalized eigenvalue problem. One problem with LDA
is that the transformed space might not be well modeled
with diagonal Gaussians (as is typical in speech recogni-
tion), thus we usually follow LDA transform with an MLLT
transform [3] such that the transformed featues are well rep-
resented with diagonal Gaussians.

LDA has some limitations. LDA is Bayes optimal when
the classes have identical covariances. Heteroscedastic LDA
removes this assumption allowing each class to have dif-
ferent covariances and optimizes an appropriate maximum
likelihood objective function [4]. Another way to improve
LDA is by using the Kernel trick which we review next.

3. SUBSPACE KERNEL DISCRIMINANT
ANALYSIS

Kernel-based techniques have been very popular recently in
machine learning and pattern classification literature. Sup-
port vector machines (SVM), kernel LDA and kernel PCA
are among those methods. The idea of KDA (or KFD for
Kernel Fisher Discriminant) is to solve the LDA problem in
a so-called kernel feature spaceF .

In kernel-based techniques, featuresx ∈ IRn are mapped
nonlinearly through mappingΦ(·) to Φ(x) ∈ F , whereF
is potentially a much higher dimensional feature space. For
a given classification or learning problem, one considers the
same algorithm inF instead ofIRn. The advantage of this
nonlinear mapping is that even if the classes are not linearly
separated in the original space, one hopes that they are lin-
early separated in the higher dimensional spaceF . A lin-
ear discriminant inF yields a nonlinear discriminant in the
original space.

The disadvantage of going into a high dimensional space
could be computatinal requirements in that space. However,
for certain feature spacesF , there is a highly effective trick
for computing scalar products using kernel functions,i.e. :

(Φ(x) · Φ(y)) = K(x, y).

These spaces are characterized by their kernel function
and we need not transform original features toF if our al-
gorithm can be implemented by just using scalar products.
Some common kernel functions are:

K(x, y) = exp
(−||x− y||2/c

)
,

K(x, y) = ((x · y) + c)d,



called Gaussian RBF and polynomial kernels, wherec, d are
parameters.

Kernel Fisher Discriminant were introduced by Mikaet
al.[5, 6] for a two class problem. It can be generalized to
a multiclass problem in a straightforward manner [7]. We
need to transform the LDA problem formulation inF space
to use scalar products only. To this end, first consider the
casep = 1, i.e. θ = vT is a row vector,v ∈ F . Objective
function is the Rayleigh coefficient:

f(v) =
vT Bv

vT Wv
,

whereB andW are theoretically computed inF space us-
ing Φ(x) features.

Assume we can expressv in terms of a linear combina-
tion of mapped vectors:

v =
m∑

j=1

ṽjΦ(pj), (2)

where ṽj ∈ IR and we call(pj ∈ IRn)m
j=1 pivot vectors.

Define a new feature vector̃x ∈ IRm obtained from original
feature vectorx ∈ IRn by its jth component as:

x̃j = (Φ(pj) · Φ(x)). (3)

Note that, with this definition, we can replace the transfor-
mation scalar productθx = vT x in the high dimensional
kernel spaceF with a scalar product of the coefficient vec-
tor ṽ and the tranformed features̃x in IRm,

vT Φ(x) =
m∑

j=1

ṽjΦ(pj)T Φ(x) = ṽT x̃.

Then, we can also express the Rayleigh coefficient nu-
merator and denominator by the following:

vT Bv = ṽT B̃ṽ,

vT Wv = ṽT W̃ ṽ,

whereB̃ andW̃ are obtained using the feature vectors(x̃i)N
i=1

instead of the original features(xi)N
i=1 as in (1).

So, this results in a simple formula. Transform orig-
inal features nonlinearly tõx domain (using kernel scalar
products) of dimensionM . Compute statistics̃B andW̃
using the new features and obtainṽ vector using regular
LDA method. Note,̃v will be the eigenvector correspond-
ing to the largest eigenvalue of the generalized eigenvalue
problem involvingB̃ andW̃ . When it comes to applying
the kernel LDA to a new feature vectorx, we first transform
it into x̃ as in equation (3) and then find̃vT x̃ to be the one
dimensional feature to be used.

Generalizing the above discussion top > 1 is trivial. In
this case, we assume each rowvT

i of matrixθ = [v1v2 · · ·vp]T

is in the span of the mapped pivot vectors and the discussion
follows through and boils down to finding the coefficients
ṽi for each row of the transform. We can call the resulting
transform matrix as̃θ.

In the above discussion in equation (2), we assumed
that the transform row vectorv is in the span of the im-
ages of pivot vectorspj . KDA literature claims that the un-
constrained vectorv that solves the LDA problem in space
F should be in the span of transformed training vectors
(Φ(xi))N

i=1 [5]. This result is said to follow from the theory
of reproducing kernels [6].

Our discussion above which assumesv is in the span of
M pivot vectors, is not a limitation for the original KDA.
By choosing pivot vectors as the training data, we can ob-
tain unconstrained KDA solution. However, training set size
is prohibitively high in speech recognition. Usually, 6000
features per minute are extracted from speech data and we
could use hundreds of hours of data to train our systems
which results in the value ofN being in the order of hun-
dreds of millions. So, using training data directly as pivots
is simply impractical. That is the reason why we chooseM
pivot vectors instead of all the training data to compute a
solution which is not the optimal KDA solution, but a sub-
space solution which nevertheless could be powerful. We
call our method “subspace KDA” to emphasize that we op-
erate in a smaller subspace of the high dimensional feature
spaceF instead of the (at most)N dimensional subspace as
in regular KDA. How well the subspace KDA performs de-
pends on how well we can approximate the subspace with a
much smaller dimensional subspace (of at mostM dimen-
sions) by using appropriate pivot vectors.

It is interesting to note that, subspace KDA amounts to
choosing a new set of features by nonlinearly transforming
the original ones and working with the new features for the
rest of the problem as we explore in the next section.

4. CHOOSING PIVOT VECTORS

Pivot vectors are an essential part of the subspace KDA
transform. Intuitively, we need to choose them appropri-
ately for better performance. If we increase the number of
pivots, it becomes harder to compute the statistics andB̃
andW̃ matrices may become more rank-deficient.

If we choose the pivot vectors to be the basic unit vec-
tors, that ispj = ej for j = 1, . . . , n, whereej is the basic
unit vector with value 1 at indexj and 0 elsewhere. In this
case, for a polynomial kernel with parameterd andc:

x̃j = (xj + c)d,

that is each feature vector is elementwise transformed non-
linearly as shown above tõx and the vectors̃x act as our
new features.



A more intelligent choice for pivot vectors would be to
choose them among training vectors. One approach is to
choose them randomly [8]. A resonable choice is to use
class means as pivot vectors. The class means can be con-
sidered to “summarize” the training data, hence the result-
ing θ matrix can be assumed to approximate the true KDA
transform better by choosing pivot vectors that summarize
the training data. Looking from another angle, we would
like to get mapped pivotsΦ(pj) that are most independent
from each other, yet still have a span that is close to the
span of the original mapped training vectors. This is our in-
tuition, but it has to be studied mathematically in rigor. For
the purposes of this paper, we leave the discussion here and
continue to our results.

5. RESULTS

We applied the discussed technique to the phone recogni-
tion problem in TIMIT database [9]. We mapped 64 phones
in TIMIT transcriptions down to 48 as in [9] for obtaining
monophone models. During performance calculations, we
further mapped 48 phones down to 39 as is typical[9].

We built triphone models using different features with
39 dimensions each. MFCC features are standard 12 cep-
stra + energy and∆ and∆∆ dynamic features. LDA fea-
tures are obtained by transforming 91 dimensional spliced
static MFCC features from 7 neighboring frames to 39 di-
mensions and applying MLLT transform afterwards. SKDA
features are obtained by the procedure defined in section 3
using 48 monophone spliced means as pivot vectors (M =
48). We used Gaussian RBF as the kernel operator when
obtaining 48-dimensional̃x features with parameterc being
3 times theL2 norm squared of the average training vector
(for numerical stability). Then, the dimension is reduced
from 48 to 39 using LDA-type processing as defined above.
MLLT is applied to SKDA features as well. We report here
phone recognition results for an initial study of the effec-
tiveness of the subspace KDA technique without using any
language model on phone sequences. The results are pre-
sented in Table 1. Correct detection results ignore insertion
errors as in [9]. As it can be observed in the table, we could
not achieve increase in accuracy by using SKDA features
instead of MFCC or regular LDA features in this work. The
reason for worse results for SKDA could be due to using a
small subspace of the mapped training data instead of the
whole space. We will explore different pivot vector options
in the future to obtain better performance.

6. CONCLUSION

Unlike many pattern classification problems, speech recog-
nition involves many instances of training data due to rela-
tive ease of obtaining speech data. This fact is useful in one

Features MFCC LDA SKDA
Accuracy 62.92% 70.59 % 54.97%
Correct detection 80.34% 82.34 % 71.53%

Table 1. Phone recognition accuracy on TIMIT test set with
different features of dimension 39.

sense since we can use huge amounts of data to train com-
plex statistical models for speech recognition. However, for
the formulation of the Kernel Fisher’s Discriminant, this is a
disadvantage since the problem is transformed into a prob-
lem in anN dimensional space whereN is the amount of
training data.

We propose a subspace version of kernel discriminant
analysis that can be suitable for speech recognition and eval-
uate its performance in a phone recognition task. Our initial
experiments did not yield an increase in performance for
SKDA over MFCC or LDA features. This could be due to
the suboptimal subspace dimension and the choice of pivot
vectors in this study. We will explore different configura-
tions in our future work.

SKDA needs to be tested for larger databases and large
vocabulary speech recognition tasks. However, it is safe
to say that SKDA has great potential for improving speech
recognititon performance since it enables “nonlinear” trans-
formation of features to a more discriminative space with
minimal increase in computation time.

7. REFERENCES

[1] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An in-
troduction to kernel-based learning algorithms,”IEEE Tr. Neural Net.,
vol. 12, no. 2, pp. 181–202, March 2001.

[2] R. O. Duda and P. E. Hart,Pattern classification and scene analysis,
John Wiley & Sons, New York, 1973.

[3] R. A. Gopinath, “Maximum likelihood modeling with Gaussian dis-
tributions for classification,” inProc. IEEE Conf. Acoust. Speech Sig.
Proc., volume 2, pp. 661–4, 1998.

[4] N. Kumar and A. G. Andreou, “Heteroscedastic discriminant analysis
and reduced rank HMMs for improved speech recognition,”Speech
Communication, vol. 26, pp. 283–97, 1998.

[5] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Muller,
“Fisher discriminant analysis with kernels,” inNeural Networks for
Signal Processing, pp. 41–48, 1999.

[6] S. Mika,Kernel Fisher Discriminants, PhD thesis, University of Tech-
nology Berlin, October 2002.

[7] G. Baudat and F. Anouar, “Generalized disriminant analysis using a
kernel approach,”Neural Computation, vol. 12, no. 10, pp. 2385–
2404, 2000.

[8] A. Lima, H. Zen, Y. Nankaku, C. Miyajima, K. Tokuda, and T. Ki-
tamura, “On the use of kernel PCA for feature extraction in speech
recognition,” inEurospeech, 2003.

[9] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition
using hidden Markov models,”IEEE Tr. Acoust. Sp. Sig. Proc., vol.
37, no. 11, pp. 1641–1648, November 1989.


