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ABSTRACT

In this study, we propose two novel semantic language model-
ing techniques for spoken dialog systems. These methods are
called semantic concept based language modeling and seman-
tic structured language modeling. In the concept based lan-
guage modeling, we propose to use long span semantic units to
model meaning sequences in spoken utterances. In the latter
technique, we use statistical semantic parsers to extract infor-
mation from a sentence. This information is then utilized in a
maximum entropy based language model. The language mod-
els are trained and evaluated in the air travel reservation do-
main. We obtain improvement over a sophisticated class based
N-gram language model both in terms of recognition accuracy
and perplexity. Interpolation of the proposed techniques with
the class-based N-gram LM provides additional improvement.

1. INTRODUCTION

Language modeling for speech recognition attempts to model
the probability P (W ) of observing a word sequence W in nat-
ural speech. Until recently, simple N-gram language modeling
has been the dominant method of modeling natural language
for speech recognition.

It has been long argued that the N-gram language models
are suboptimal, and one could do better by considering longer
range dependencies between words. However, it has been sur-
prisingly difficult to beat the performance of N-gram language
models consistently. Recently, there has been studies to en-
able use of syntactic structure of the sentence for language
modeling [1, 2, 3]. This method is named structured language
modeling (SLM). In SLM, one uses a syntactic parser to find
the most likely syntactic parse of a sentence. To enable long
range dependencies in the language models, the phrasal head
words that are exposed by the parser before the current word
are used as additional history words. The non-terminal labels
can also be used in the history [3]. Researchers achieved about
2-3% relative improvement in error rate across different tasks
such as switchboard and wall street journal data using SLMs
[4].

In this paper, we introduce two new types of methods for
language modeling. The idea underlying our first algorithm is
to define semantic concepts defined by phrasal CFGs to model
the meaning sequence in sentences. This approach is similar
to the technique defined in [5, 6]. We estimate the probability
of the concept sequence using an N-gram concept model with
words as fillers. The difference between our approach and the
method in [5] is that, we obtain the word sequence probabilities
using N-grams instead of relying on phrasal PCFG probabili-
ties which might be error prone. Moreover, our concepts are
designed to maximize the word coverage in a sentence while
having as different ways of expressing the same meaning as
possible.

The second technique proposed in this study is based on
using statistical semantic parses of air travel domain sentences
for language modeling. We explore ways to incorporate the
rich information in the semantic parses to enhance the lan-
guage model. We cannot use head words since it might not be
clear what should be the head word in a semantic parse. We
compute the joint probability of the sentence and the parse
and use features such as parent label name, previous finished
constituent label name as well as regular N-gram history fea-
tures for both words and labels. We use maximum entropy
(ME) modeling for combining these features in a single effec-
tive language model. We provide the details in section 4.
The rest of the paper is organized as follows. In section 2,

we present our approach to semantic concept based language
modeling. We briefly describe the semantic classer and parser
in section 3. Section 4 presents maximum entropy modeling in
general and gives details about our maximum entropy language
models (MELMs) that use semantic classer information. The
experimental results are presented in section 5.

2. CONCEPT BASED LANGUAGE MODELING

The class based language model built at IBM for Darpa Com-
municator (DC) task [7, 8] is very rich in terms of word classes.
It has a total of 41 classes, with commonly used classes such as
[city], [month], [dayofweek], and more. Some of these classes
are designed to model the structure within a broad class such
as [city], by defining detailed sub-classes [bigcity], [mediumc-
ity], [smallcity], [citystate] and [cityairport]. Therefore, we fo-
cus on modeling long span information that complements the
information in the classes.
An extension of CFGs is the concept language modeling [5]

which defines a semantic unit as concept. In [5], each concept
is written as a PCFG and compiled into a stochastic recursive
transition network (SRTN). Our concepts are also represented
by CFGs. In addition, each word can be a concept by itself (as
a filler concept if needed). We write a finite state transducer
that combines all concept CFGs and words to parse the text
data to find the semantic concept parse that has the least num-
ber of concepts. The difference between [5] and what we are
proposing here is that we are not interested in the probability
of word sequence given the concept sequence, P (W |C). The
drawback of the approach in [5] is if the spoken utterance is
not grammatical with respect to predefined concepts, or if the
training data to estimate the within grammar probabilities is
not enough, P (W |C) may be unreliable. In our approach, we
find the probability of the most likely concept sequence P (C),
and rely on regular N-gram to estimate P (W |C) by ignoring
the concept sequence.
The parameters of our concept model are trigram concept

probabilities, P (Ci|Ci−1, Ci−2), where Ci is the ith concept ob-
tained from the rule-based semantic parse of the sentence. We
define a parse of a sentence to be a sequence of concepts which



generate the sequence of words in the sentence. To obtain the
language model score, we interpolate the concept score and the
word sequence score:

LM score = λ logPN-gram(W ) + (1− λ) logPN-gram(C),

where λ ∈ [0, 1] is an interpolation parameter. Note that this
score is not an accurate estimation of the probability of the
sentence P (W ), but just a language model score to compare
sentences.
First, we defined a concept as a set of sequence of words

which has a unique semantic meaning. Next, we designed rules
to capture the concepts from the training data. The rules are
designed to maximize both the coverage of words in a sentence
and the variety of ways of expressing a concept while keeping
semantic coherence. The examples given below illustrate this
point. The reason for this is that the class based language
model we use subsumes some of the concepts as its classes.
Therefore, the concept language model should complement not
only the plain trigram but also a very rich class based trigram
language model. In our systems there are 23 concepts. The
training data is tokenized to obtain a concept sequence. The
words that are not covered by concepts are also assumed as
trivial concepts.

• [book flight] please book me on [/book flight] [numflt]
flight twenty one [/numflt]

• [i want to go] i would like to fly [/i want to go] [city from]
from philadelphia [/city from] [city to] to dallas [/city to]

• [request1] could you please list the [/request1] flights
[city from] from boston [/city from] [city to] to denver
[/city to] on [date] july twenty eighth [/date]

The trigram class-based language model is trained using
137K sentences and smoothed using deleted interpolation on
a held out data of 18K sentences. Concept language model
P (C) is trained on a 100K subset of the training data and
again smoothed using deleted interpolation on the same held
out set. We evaluate the concept-based language models in
Section 5.

Figure 1: An example of a semantic classer output.

3. STATISTICAL SEMANTIC CLASSING AND

PARSING

Semantic classing and parsing are used in IBM for natural lan-
guage understanding for spoken dialog systems [9]. In seman-
tic classing, we tag words according to their meaning (such
as month names, numbers representing hours) instead of their
part-of-speech. We have a single level of labels above the tags
and no more additional levels are allowed. Thus, our semantic
classer only groups together neighboring words that constitute
a certain meaning or concept (such as a date expression or
time expression). A tree representation of a semantic classer
is shown in Figure 1. Semantic parser takes the output of
the classer and derives more complex interactions between se-
mantic constituents. An example is shown in Figure 2. The

Figure 2: The parser output of the same sentence that is classed
in Figure 1.

decision-tree based statistical classer and parser for air travel
domain were developed at IBM [9] for the NLU module of the
DARPA communicator project. The analysis process is sepa-
rated into two parts for the ease of training and simplification.
However, it is also possible to define a single level semantic
parser that will perform the whole analysis in one step.

We used the statistical semantic classer output for our lan-
guage modeling experiments. We plan to use semantic parser
information in our future studies.

4. MAXIMUM ENTROPY LANGUAGE

MODELING USING SEMANTIC FEATURES

Maximum entropy method is an effective method to combine
multiple information sources (features) in statistical model-
ing. Maximum entropy model generates a probability model
that matches the empirical feature probabilities exactly, but
assumes no additional information about unseen events, effec-
tively smoothing the probability distribution for them. For
this work, we used maximum entropy modeling to incorporate
lexical and semantic information sources for language model-
ing. ME models have been used in language modeling before,
in the context of N-gram models, whole sentence models and
syntactic structural language models [10]. Khudanpur and Wu
[3] also added global apriori semantics (the topic) as another
feature to include in the maximum entropy model. However,
there has not been any study to use sentence-based higher level
semantic features such as the information obtained through a
semantic classer. Such semantic features could be very im-
portant especially in domain specific conversational dialog sys-
tems, such as conversational telephony , or domain dependent
speech-to-speech translation applications.

We propose to use higher level semantic features in our air
travel domain language model. We achieve this by using the
semantic classer we introduced in Section 3.

We used the maximum entropy models to rescore N-best
hypothesis, so the parser is not required to be left-to-right as
opposed to the one used in [2]. In fact, our classers work on
the full sentence and not left-to-right. However, especially for
telephony applications, we believe it is feasible to perform an
N-best rescoring step after the N-gram based decoding is done,
since it costs much less to rescore N-best hypotheses as com-
pared to the decoding time.



4.1. MAXIMUM ENTROPY MODELS

We can combine multiple features in a maximum entropy model
in the following way:

P (o|h) =
e

∑

i
λifi(o,h)

∑

o′
e

∑

i
λifi(o′,h)

,

where o is the outcome (e.g.current word), h represents the
history or context and fi are feature indicator functions which
are “activated” when a certain outcome oj(i) occurs in a certain
context where qk(i)(h) = 1. Here qk(i) is also an indicator
function that is activated only when the context h has a certain
property or in other words, when h is in an equivalence class
Hk(i). Mathematically:

fi(o, h) =

{

1 if o = oj(i) and qk(i)(h) = 1
0 otherwise

For example, a bigram feature fi representing the word se-
quence “IN THE” in maximum entropy modeling would have
oj(i) = “THE” and qk(i) would be the question “Does the con-
text h contain the word “IN” as the previous word of the cur-
rent word ?”.

4.2. JOINT ME PROBABILITY MODEL

We are interested in computing the probability of the word
sequence P (W ) using the semantic features present in the parse
C. A correct formulation would compute:

P (W ) =
∑

C′

P (W,C ′),

where C ′ are all possible parses of the sentenceW . To simplify
the problem, we only use the most likely parse C,

P (W ) ≈ P (W,C).

To compute P (W,C), one could think about decomposing and
modeling P (W |C)P (C) or P (C|W )P (W ). However, we built
a direct joint ME model.
Consider the following equivalent textual representation of

the semantic classer tree output shown in Figure 1:

• [!S! i word want word to word book word a word [RT-
OW round rt-ow trip rt-ow RT-OW] ticket word to word
[LOC Denver city Colorado state LOC] for word [DATE
september month fifteenth date DATE] !S!]

We used the tokens in this representation for our joint model.
Here “[LABEL” denotes begin label and “LABEL]” denotes
end label and the tags are separated from the word by “ ”. We
decided to ignore the tags, since our LM classes were very rich
and tags had only limited information in addition to the LM
classes. Labels, however had more longer range information,
so we focused on labels and words. Our outcome vocabulary
is T =W ∪Bl ∪El, where W is the word (or class) vocabulary
and Bl and El are begin and end label vocabularies. So, we
represent the joint probability

P (W,C) =

N
∑

i=1

P (ti|t1, . . . , ti−1),

where ti ∈ T are individual tokens in the textual representation
presented above.
A regular token N-gram model can be built based on this

representation. We built an N-gram type ME probability model

on tokens ti. We call this model MELM1. MELM1 uses the fol-
lowing question types for token ti: (1) unigram, default ques-
tion (2) Bigram, ti−1=? (3) Trigram, (ti−2, ti−1)=? (4) 4-
gram, (ti−3, ti−2, ti−1)=?.
Furthermore, it is possible to use more intelligent features

that will capture more longer range and high level information.
Considering data sparsity and computation requirements, we
came up with the following sublist of context question types
for individual token probability computations:

• Default question (for unigram feature)

• previous word pi (for bigram feature, skip label tokens)

• Two previous words, ppi and pi (for trigram feature, skip
label tokens)

• Current active parent label for the token (Li)

• Li andNi= the number of words to the left since starting
the current constituent

• Li, Ni and pi

• Oi, Mi: the previos completed constituent and number
of words to the left since completing Oi

We call this model MELM2. In this model, the context hi can
be represented by the six-tuple (pi, ppi, Li, Ni, Oi,Mi) intro-
duced above and the LM probability can be computed by:

P (ti|hi) = e

∑

Nf

j=1
λjfj(ti,hi)

/Z,

where each fj is associated with one outcome token and one
question of the kinds listed above, and Z is the normalization
term.
Note that, these are the questions we chose for the ME

model. There might be many other possible features that uti-
lize other information such as tags, grandparent labels etc. The
choices could be dependent on the domain or the type of se-
mantic parsing employed. The maximum entropy framework
enables one to incorporate any type of features as long as they
are computable.
We evaluated the ME LMs by rescoring N-best hypotheses

and computing the perplexity on two different testsets. The
results are presented in the next section.

5. EXPERIMENTS AND RESULTS

We performed experiments in the air travel domain. The acous-
tic models are trained using air travel and generic telephony
data [8]. The language model training data consisted of about
137K sentences in air travel domain. A held out set of 18K sen-
tences was used for smoothing. The class-based trigram and
concept language models are trained using maximum likelihood
N-gram training with deleted-interpolation smoothing. For
maximum entropy training, all features extracted from training
data are kept as model features. The ME models are trained
using the improved iterative scaling algorithm with fuzzy ME
smoothing [11] with a single variance parameter of 3.0. The
heldout data set was used to determine the optimum value of
this parameter.
We used two testsets to evaluate the new language mod-

els. Test1 has 1173 utterances from the calls received by IBM
in DARPA communicator evaluation in June 2000. Test2 is a
subset of calls received from 8 different sites during the same
evaluation. This subset is chosen randomly among all utter-
ances that were complete and meaningful (unchopped speech,
grammatical). Test2 has 1458 sentences. Our motivation for
making testset Test2 was to have a testset that was free of
chopped speech and ungrammatical sentences.



Methods Test1 Test2
word trigram 64.57 42.42
class trigram 45.25 26.55
MELM1 36.53 27.45
MELM2 35.86 26.82

Table 1: Perplexity values obtained for two testsets using word
and class trigrams and new MELMs.

We have already worked very hard to improve the language
model for DARPA communicator and achieved good perfor-
mance with class-based and compound word language models
[7]. These improvements are included in the baseline class tri-
gram language model that we used. Table 1 shows the per-
plexity results for word and class trigram LMs and the new
MELMs. Note that the concept based LM is not normalized
the same way and it does not provide comparable perplexity re-
sults, so we only compare perplexities for word/class trigrams,
MELM1 and MELM2. It should also be noted that the MELMs
use the probability P (W,C) which is bounded from above by
P (W ), so the perplexity values are slightly overestimated. For
Test1, MELM2 achieved 45% and 21% reductions in perplexity
as compared to word and class trigram LMs respectively. Note
that MELM1 and MELM2 had lower perplexity than the class
trigram in Test1, but not in Test2, possibly due to the gram-
matical sentences that are well modeled by the class trigram.
To evalute the error rate performance of the new LMs, a

lattice with low oracle error rate was generated by a Viterbi
decoder using a class trigram language model. From the lat-
tice, we generated at most 300 sentences for each utterance
to form an N-best list. We rescored these utterances using the
new proposed language models and our baseline word and class
trigram language models. The results are presented in Table
2.
In Table 2, the first entry is the oracle error rate in the

N-best list. The second and third rows show the error rate
for the word and class trigram LMs [7, 8]. The error rate for
word trigram LM is artificially low due to N-best list rescoring
compared to direct decoding with the word trigram. The next
entry is the concept based LM score which is an interpolation
of the concept trigram and the class trigram. This approach re-
duces the error rate about 2-3% relative. The following entries
are the error rates for maximum entropy language models and
their sentence level interpolation with the class trigram LM.
The results show that MELM1 can achieve the same error rate
as the class trigram LM and when the two are interpolated,
further reduction can be achieved. MELM2 performs better
by itself, and slightly better after interpolation. Further im-
provement is observed in Test2 when all three LMs are interpo-
lated, as shown in the last entry in the table. Overall, we can
achieve about 3% relative reduction in error rate for both test-
sets after interpolating with the class trigram language model.
These results are similar to the amount of improvement that
was achieved with SLMs in other domains [2, 10].

6. CONCLUSION

We introduced two new language modeling techniques that use
higher level long range semantic information to improve the
language modeling for speech recognition. Both models use
parsers that will group together neighboring words that con-
stitute a semantic class (or concept). In concept based LM,
the semantic information is used in an N-gram maximum likeli-
hood model. In semantic structured language modeling, many

Methods Test1 Test2
N-best oracle 8.8% 4.1%
word trigram 18.9% 10.8%
class trigram 17.7% 9.9%
Concept+class trigram 17.3% 9.6%
MELM1 17.7% 10.0%
MELM2 17.4% 10.0%
MELM1+class trigram 17.3% 9.6%
MELM2+class trigram 17.2% 9.6%
MELM2+concept+class trigram 17.2% 9.5%

Table 2: Word error rates obtained using various language
modeling methods.

sources of semantic information is compiled into a single ef-
ficient model using maximum entropy. The results indicate
that, some modest gain could be achieved by using semantic
information in language modeling. In the future, we plan to
utilize the dialog state in our new language models. The se-
mantic structured language model does not have to use ME
modeling. Other modeling techniques, such as N-gram like
maximum likelihood can be used as well.
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