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ABSTRACT 
 

In this paper, a multimodal person verification system 
based on fusing information derived from face and 
speech signals is proposed. Principle component 
analysis and independent component analysis 
techniques are used for face verification and mel-
frequency-cepstral coefficients are used for speaker 
verification. The matching scores from individual 
modalities are combined using the sum rule. The results 
indicate that fusing indivual modalities improve the 
overall performance of the verification system.  

 
1.  INTRODUCTION 

 
In the last decade, biometric person verification has 
found wide range of applications. Biometric systems 
using a single biometric trait for authentication 
purposes have some limitations. Noisy data, limited 
degrees of freedom, spoof attacks, and unacceptable 
error rates, all affect the performance, security and 
convenience of using such a system. Multibiometric 
systems that use multiple traits of an individual for 
authentication, alleviate some of these problems while 
improving verification performance.  

Despite intensive efforts to solve the face 
recognition/verification problem since 1970s, the 
problem still remains unsolved due to large variations 
in facial appearance caused by, for instance, changes in 
expression, illumination, occlusion and pose. In initial 
efforts to build automatic face recognition systems, 
feature-based methods were popular [11-13]. After 
1990s, template matching-based methods have become 
popular [4]. Since face data is obtained by 
lexicographically ordering the image pixels, it 
constitutes a very high dimensional space. To reduce 
the excessive dimensionality and to capture or 
approximate the face manifolds, several subspace 
analysis tools are utilized. The most widely used 
subspace analysis tools are principle components 
analysis (PCA) [17, 20, 21, 25], Linear Discriminant 
Analysis (LDA) [3], Independent Component Analysis 
(ICA) [1], their nonlinear varieties via kernel tools [16, 
23, 28, 29] and their mixture models [8, 14, 15, 24].  

Speaker verification based on audio is a relatively 
mature research area.  Similar to  face verification, there 
are problems associated with the speaker verification, 
such as misspoken or misread phrases, emotional states, 
sickness and aging. Furthermore, errors during the 
removal of silence parts from the input speech signal 
lead performance reductions. In this respect, the 

features extracted from the speech signal should be 
robust against these problems. 

For speaker verification, many different features 
such as linear predictive coefficients (LP), cepstrum, 
and mel-frequency-cepstral coefficient (MFCC) 
features have been used [5]. Modeling method varies 
depending on whether one would like to perform text-
independent or text-dependent speaker verification. For 
text-independent verification, nonparametric probability 
density functions (pdf) and Gaussian mixture models 
(GMMs) have been used.  For text-dependent 
verification, dynamic time warping (DTW), GMMs and 
Hidden Markov Models (HMM) are the preferred 
modeling techniques. Usually, simple Bayes’ 
classification or Neural networks are used for 
classification purposes [5].  

Multimodal biometric systems [9] are expected to 
be more reliable due to the presence of multiple pieces 
of evidence. A large number of information fusion 
methods that can be used for combining evidence from 
unimodal systems have been proposed in the literature 
[2, 18, 19, 26, 27]. 

In this paper, we propose to use the most natural 
and acceptable biometric modalities for person 
verification with the emphasis on fusion of the 
information derived from these sources. Mainly, we 
will study robust face and speaker verification. For face 
verification we used PCA and two architectures of ICA. 
PCA is used as a baseline for comparison purposes. 
ICA approach has been priorly used for face 
recognition, but its performance in verification has not 
been thoroughly tested. Encouraging results in 
recognition performance have led us to use the ICA 
approach for face verification. For speech verification, 
we have used the standart MFCC features and GMM 
modeling. For combination of the two modalities, we 
have used the sum rule. 

The organization of the paper is as follows: In 
sections 2 and 3, the unimodal verication techniques are 
explained. In section 4, the combination scheme used is 
conveyed. Experimental setup and results are presented 
in section 5 and conclusions are given in section 6. 

 
2.  FACE VERIFICATION 

 
    2.1. Principal Component Analysis 

Principal component analysis (PCA) is the most popular 
subspace projection technique used for face recognition 
[17, 25]. PCA extracts the linear projection that 
maximizes the total scatter of the face images. In other 
words, PCA aims to determine a new orthogonal basis 
vector set that best reconstructs the face images in the 



mean-square error sense. These orthogonal basis 
vectors, also called eigenfaces, are the eigenvectors of 
the covariance matrix of the face images, associated 
with the highest eigenvalues. 
 
2.2. Independent Component Analysis 
Briefly, ICA is the separation of independent sources 
from their observed linear mixtures by using high order 
statistics [10]. In the ICA method, the only information 
we have is the observations, and neither the mixing 
matrix nor the distribution of the sources is known. 
Using the assumptions that the sources are statistically 
independent and non-Gaussian (at most one of them can 
have Gaussian distribution), a separation matrix is 
estimated. Two different architectures are presented for 
face recognition using ICA [1]. In the first architecture 
(ICA1), basis images are assumed to be statistically 
independent whereas in the second architecture (ICA2), 
the representation coefficients are assumed to be 
statistically independent. Source images obtained in the 
first architecture are spatially local and sparse in 
appearance, while in the second architecture, source 
images tend to have global face appearance.  

 
3.  VOICE-BASED VERIFICATION 

 
Features for voice-based verification should 
characterize the speaker’s voice and should distinguish 
it from other speaker’s voices. Short-time spectrum of 
speech has information about the spoken sounds and 
speaker’s characteristics together. Mel-frequency 
cepstral coefficients (MFCC) estimate the logarithm of 
the energy in nonuniformly located frequency bands 
placed according to the speech perception of humans. 
After filterbank outputs are obtained, their DCT 
transform is taken to further decorrelate the feature 
vector.  
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Here, kc are the MFCC coefficients and jm are the 

filterbank outputs.  
Vocal-tract shape and vocal fold frequency (pitch) 

are biometrics for a person. Hence, formant locations in 
the spectrum and pitch for each speaker are person-
distinguishing features. MFCC’s carry information 
about the vocal-tract shape but average out the pitch 
information. Pitch information can be added as another 
feature as well. However, we use just MFCC features 
for now and leave adding other features as future work. 

For modeling the feature vector from each speaker, 
a Gaussian mixture model (GMM) is mostly used 
because of its modeling capability and computational 
ease. Intuitively, each mixture in a GMM models a 
different sound in the speaker’s speech. There is a well-
known expectation-maximization (EM) algorithm for 
parameter estimation of GMMs. For initialization of 
GMM means, k-means algorithm is used first to cluster 
feature vector data. In the end, for each speaker we 
obtain a joint PDF of the feature vector. 
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where kc  are the mixture weights and ),,N( kk
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are the individual Gaussians for speaker C. k

�
is 

chosen to be a diagonal matrix for computational 
reasons.  

During testing, we assume a scenario as follows. 
The user claims an identity C. We calculate the frame-
averaged log-likelihood of the new feature vectors 
using the likelihood function given above for the 
claimed speaker as follows: 
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where N is the number of feature vectors (frames) 
extracted from the test speaker and Lc is the log 
likelihood of the observations belonging to the claimed 
class.   

For decision, the Bayes’ optimal solution is to 
compare likelihood-ratio of hypotheses with a threshold. 
This requires us to compute the likelihood of the 
competing hypothesis. We approximate the likelihood 
of the competing hypothesis, by using a global model 
obtained by lumping together all feature vectors in the 
training data.  

The frame-averaged log-likelihood from the global 

model is given as: �
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    where G denotes the class of all speakers. 
The verification system is then carried out by 

comparing logarithm of the likelihood-ratio Lc – LG 
with a threshold. Our current system will serve as a 
base for our future experiments.   

 
4.  FUSING FACE AND VOICE MODALITIES 

 
The three possible levels of fusion for multiple 
biometric traits are: (a) fusion at the feature extraction   
level -combining features extracted from the raw 
measurements obtained from each sensor-, (b) fusion at 
the matching score level -combining partial soft (for 
instance a continuous score between 0 and 1) decisions, 
given by the different experts -, (c) fusion at the abstract 
level -combining hard (accept/reject,or 0/1) decisions of 
several experts. A majority vote scheme can be used to 
make the final decision-. 

In this work, we decided to utilize the sum rule for 
matching score level fusion. We will consider that all 
experts output their local decisions by generating scores 
in the interval [0,1]. These scores are a measure of their 
respective belief of the acceptability of the identity 
claim: the higher the score, the higher the belief that the 
identity claim is genuine.  

An important aspect that has to be considered when 
combining several experts is the normalization of the 
scores obtained from these experts (Brunelli and 
Falavigna,1995). The responses of the different 



classifiers usually have different scales (and possibly 
offsets), so that a sensible combination of the outputs 
can proceed only after the scores are properly 
normalized. Normalization typically involves mapping 
the scores obtained from multiple domains into a 
common domain before combining them.  
      A first step towards the normalization of the scores 
is to reverse the sign of distances, thereby making them 
concordant with the matching scores. A simple way to 
normalize scores is to estimate their average values and 
standard deviations so that they can be scaled into a 
standard interval, such as [0,1], by means of an 
appropriate mapping. We have obtained the normalized 

score "
ijS from the original scores ijS ,where i =1,...,d 

denotes the expert and j denotes a particular score, by 
using the sigmoid function 
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    The sum rule has its base in Bayesian theory with the 
assumption that the posterior probabilities computed by 

the classifiers do not deviate dramatically from the prior 
probabilities. The rule can be formalized as follows: 

Assign xn→wc if θ>+− �
=

K

k

nkcc xwPwPK
1

)|()()1(    (6) 

where xnk is a specific feature vector, xn is the sample 
test pattern, wc is the claimed class. 
      Sum rule simply takes the weighted average of the 
individual score values. Kittler et al. showed in [18] 
theoretically that under certain assumptions and 
restrictions many combination schemes often used, such 
as max, min and average are the special cases of the 
sum and the product rules. It has also been shown in 
[18] empirically in two applications that the sum rule is 
more robust against noise and other disturbances than 
the product rule, and often outperforms other 
combination methods. The sum rule has recently been 
used in [22] with a number of other decision fusion 
methods, giving the best performance among all. The 
block diagram of the multi modal biometric system is 
given in Figure 1.  
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Figure 1. Block diagram of the overall system. 
 
 

5. EXPERIMENTS 
 

5.1 Experimental Setup 
In our experiments, we used a database of 51 people 
[30]; 15 video sequences were taken from each subject. 
Each subject utters 10 repetitions of her/his name and 5 
different names from the database. Face images were 
captured using a Sony SDR-PD150P video camera, 
with a resolution of 720x576, at a rate of 15 fps and the 
audio stream has 16 kHz sampling rate. Eye locations 
of the faces are manually marked and the faces were 
automatically cropped and aligned. They are then 
resized to a common resolution of 60x50. Some 
examples of cropped and resized images can be seen in 
Figure 2. 

 

    
 
Figure 2. Sample cropped and resized images from the database (First 
two images are from one sequence and the last two images are from a 

different sequence of the same person) 
 

      The videos have been subsampled and only 5 
frames/video are used in the experiments. Out of 10 
repetitions of the user’s name, the first 5 are used for 
training; the remaining 5 pairs and the impostor data are 
used for testing. 



      The thresholds used in the experiments can be 
person dependent or independent. In the experiments 
detailed in this paper, a global threshold has been used. 
 
5.2 Single biometric experiments 

 
5.2.1. Face Verification Using Eigenfaces 

When testing the eigenface based face verification, we 
mainly had two parameters to tune for optimal 
performance: number of eigenfaces used for 
representation, and the distance metric. We used three 
different distance metrics, L1, L2 and normalized cross 
correlation and we used 20 eigenfaces during our tests.  
      The test procedure used for face verification from 
video sequences can be summarized as follows: 

1. For each frame in the test video, we calculate 
the distance between the extracted features and the 
features of the claimed identity in the training database. 

2. We find the minimum distance feature vector. 
3. We form a histogram of these distances. 
4. Since we have multiple frames for a test 

session, we also perform fusion at this step. To properly 
extract the matching scores of each frame, we 
normalize the distances using a sigmoid function.  

5. If the average score is greater than a 
prescribed value, we authenticate the user.   

As can be seen from the distance distribution in 
Figure 3,  the overlap between the genuine and imposter 
classes is minimal.  

 
Figure 3. Distance distribution 

 
 Figure 4. ROC curve for PCA based face verification 

 
      It can be observed from Figure 4 that face 
verification rates using PCA are very satisfactory. (� 
1% equal error rate, see Table 1). The reason of this 
performance can be attributed to the fact that proper 
alignment of the faces is crucial for PCA. L1 and L2 
norms perform better than the normalized correlation 
metric.  
 

Table 1. Equal error rates (EER) for PCA based face verification 

PCA EER (%) 

L1 1.45 

L2 1.25 

Normalized Corr. 9.99 
 

5.2.2. Face Verification Using Independent Component 
Analysis 

As can be observed from the ROC curve in Figure 
5, ICA1 performance results are very similar to those of 
PCA. See Table 2 for equal error rates).  

 
Figure 5. ROC curve for ICA1 based face verification  

 
Table 2. Equal error rates (EER) for ICA1 based face verification 

ICA1 EER (%) 

L1 0.83 

L2 0.83 

Normalized Corr. 7.09 

 
Figure 6. ROC curve for ICA2 based face verification  
 

Note that ICA2 results are inferior to those of PCA 
and ICA1. This result is surprising considering the fact 



that ICA2 performance for face recognition has been 
shown to be better than PCA and ICA1 [6, 7 ]. 

 
Table 3. Equal error rates (EER) for ICA2 based face verification 

ICA2 EER (%) 

L1 17.87 

L2 8.96 

Normalized Corr. 8.00 
 
5.2.3. Voice based Verification Experiments 

In this paper, we use standard MFCC based features 
and Gaussian Mixtures to model each speakers’ data 
regardless of spoken text. In speaker verification 
applications, it is important to normalize data and 
perform frame selection to increase performance. We 
perform a voice activity detection scheme to remove 
silences from speech data to achieve a simple frame 
selection. We do not perform any other normalization 
yet.  
      We extract an MFCC feature vector every 10 ms 
from a window of length 25 ms of speech.  For training 
the models for each speaker, we lump together all 
features extracted from a speaker (across all training 
data) and train a Gaussian Mixture Model (GMM) with 
varying number of mixtures in it. We use the well-
known EM algorithm for GMM training. We initialize 
the mixture means using the k-means algorithm. In the 
end, for each speaker we obtain a joint pdf of the 
feature vector. 

Figure 7 shows the ROC curve obtained using 13 
MFCC coefficients modeled with 8 Gaussian mixtures.   

 
Figure 7. ROC curve for voice based person verification  
 

Table 4. Equal error rates (EER) for speaker verification 

Feature Size No. of Mixtures EER (%) 

13 8 10.27 

13 16 10.34 

39 8 10.74 

39 16 10.25 

 
The equal error rates in Table 4 suggest that there 

is no significant difference between using 13 MFCC 
coefficients and its delta coefficients.  
 

5.3. Fusion Experiments 
In this section, the combination results of  the 

unimodal verification systems using the sum rule are 
given.   We combined the 3 different face verification 
techniques -taking into consideration only the best 
performing distance metric– with 13 MFCC 
coefficients modeled with 8 Gaussian mixtures. 

 
Figure 8. Scatter plot of matching scores using PCA-L2 for 

face verification and 13 MFCC, 8 mixtures for speaker verification  
 

 
Figure 9. Scatter plot of matching scores using ICA1-L1 for 

face verification and 13 MFCC, 8 mixtures for speaker verification  
 

 
Figure 10. Scatter plot of matching scores using ICA2-Corr for face 
verification and 13 MFCC, 8 mixtures for speaker verification 

 
It can be seen from Figures 8-10 that the genuine 

and impostor classes are well separated in the two-
dimensional normalized matching scores space. These 
observations are also supported by the equal error rates 
depicted in Table 5.  



Table 5. Equal error rates (EER) for fusion 

Fusion EER (%) 

Speech + PCA L2 0.44 

Speech + ICA1 L1 0.44 

Speech + ICA2 
Norm. Corr. 

3.10 

 
6. CONCLUSIONS 

 

In this paper, we have proposed a multimodal person 
verification system based on fusing information derived 
from face and speech signals.  

For face verification, PCA and ICA1 gave 
satisfactory results, whereas ICA2 performance was 
disappointing with respect to its rather successful 
performance for face recognition tasks. 

For speaker verification, 13 MFCC coefficients 
sufficed for the verification task, and hence there was 
no need for using delta coefficients. 

Combining the two modalities resulted on 
improved performance rates for all the different 
combinations studied. 
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