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Abstract— Orphan proteins are characterized by the lack of
significant sequence similarity to database proteins. To infer the
functional properties of the orphans, more elaborate techniques
that utilize structural information are required. In this regard,
the protein structure prediction gains considerable importance.
Secondary structure prediction algorithms designed for orphan
proteins (also known as single-sequence algorithms) cannot
utilize multiple alignments or alignment profiles, which are
derived from similar proteins. This is a limiting factor for the
prediction accuracy. One way to improve the performance of
a single-sequence algorithm is to perform re-training. In this
approach, first, the models used by the algorithm are trained
by a representative set of proteins and a secondary structure
prediction is computed. Then, using a distance measure, the
original training set is refined by removing proteins that are
dissimilar to the given protein. This step is followed by the
re-estimation of the model parameters and the prediction of
the secondary structure. In this paper, we compare training set
reduction methods that are used to re-train the hidden semi-
Markov models employed by the IPSSP algorithm [1]. We found
that the composition based reduction method has the highest
performance compared to the alignment based and the Chou-
Fasman based reduction methods. In addition, threshold-based
reduction performed better than the reduction technique that
selects the first 80% of the dataset proteins.

I. INTRODUCTION

Prediction of protein function using amino acid sequences
greatly accelerates experimental elucidation of protein func-
tion. The typical approach to predict the function of a protein
is to compare its amino acid sequence to sequences of the
database proteins. This is performed using such pairwise
alignment algorithms as Smith-Waterman [2] and their ef-
ficient approximations (e.g., BLAST [3] and FASTA [4]). If
there is significant similarity to a known protein, the function
can be estimated with a high degree of confidence. However,
there are thousands of new proteins that are discovered at an
unprecedented rate, in which the sequence based methods
fail to predict their function because there are no database
proteins even with weak sequence similarity. In addition, for
most of these proteins, neither profile-based methods [5], [6]
nor iterative search methods (PSIBLAST [7], SAM [8]) are
applicable. For such orphan proteins, the function prediction
cannot depend solely on sequence-level comparisons. An
alternative procedure to extract functional information is to
compare protein structures, for the function of a protein is
mainly determined by its structural conformation. It is known

that the protein structure is better conserved under mutation
than the amino acid sequence. Even when the amino acid
sequences diverge significantly, their structures are often
conserved during evolution. For such scenarios, structure
prediction algorithms can help to estimate the function.

Accurate prediction of the regular elements of protein 3D
structure is important for precise prediction of the whole 3D
structure. In secondary structure prediction, one is mainly
concerned with the assignment of secondary structure ele-
ments (the α-helix {H}, the β -strand {E} and the loop {L})
to each amino acid residue as shown in Fig. 1.

G K C ....... N T F V ← Amino Acid
| | | | | | | Sequence
L L E ....... H H H H ← Secondary Structure

Labels

Fig. 1. Secondary Structure Prediction

There are two types of protein secondary structure pre-
diction algorithms. A single-sequence algorithm does not
use information about other (homologous) proteins. The
algorithm should be suitable for a sequence with no similarity
to any other protein sequence. Algorithms of another type
are explicitly using sequences of homologous proteins, which
often have similar structures. The prediction accuracy of such
an algorithm should be higher than one of a single-sequence
algorithm due to incorporation of additional evolutionary
information from multiple alignments or alignment profiles
[9]. Single-sequence methods are important because for or-
phan proteins, any method of secondary structure prediction
performs as a single-sequence method. Hence, developing
better prediction methods for single-sequence condition has a
definite merit as it helps to improve the functional annotation
of orphan proteins.

Secondary structure prediction methods often employ such
machine learning tools as neural networks (NN), support
vector machines (SVM), and hidden Markov models (HMM).
There are essential steps in the development of a machine
learning based predictor. The first step is called feature
set selection, where the most informative correlations and
patterns are identified. This allows us to choose a model
that reflects the dependencies within structural elements.
Feature set selection is followed by the training phase where
the model parameters are estimated using proteins with
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known secondary structures. Finally, in the testing phase,
the performance is evaluated by making predictions for new
test samples. The content of the training set is important.
It has been shown that the reduction methods, which refine
the training set by excluding structurally dissimilar proteins
improve the prediction accuracy. In this paper, we compare
training set reduction methods that are used to re-train the
hidden semi-Markov models employed by the state-of-the-art
IPSSP algorithm [1].

II. ITERATIVE PROTEIN SECONDARY STRUCTURE PARSE

(IPSSP) ALGORITHM

Amino acid and DNA sequences have been successfully
analyzed using hidden Markov models (HMM). For a com-
prehensive introduction to HMMs, see [10]. In a hidden
semi-Markov model (HSMM), a transition from a hidden
state into itself cannot occur, and a hidden state can emit
a whole string of symbols rather than a single symbol. The
hidden states of the model used in protein secondary structure
prediction are the structural states {H, E, L} designating α-
helix, β -strand and loop segments, respectively. Transitions
between the states are characterized by a probability distri-
bution. At each hidden state, an amino acid segment with
uniform structure is generated according to a given length
distribution, and the segment likelihood distribution.

The IPSSP algorithm utilizes three HSMMs and an itera-
tive training procedure to refine the model parameters. The
steps of the algorithm can be summarized as follows:

IPSSP Algorithm
1. For each HSMM, compute the posterior probability dis-
tribution that defines the probability of an amino acid to be
in a particular secondary structure state. This is achieved by
using the posterior decoding algorithm (also known as the
forward-backward algorithm).
2. For each HSMM, compute a secondary structure predic-
tion by selecting the secondary structure states that maximize
the posterior probability distribution.
3. For each HSMM, reduce the original training set using a
distance measure that compares the training set proteins to
the predictions computed in step 2. Then, train each HSMM
using the reduced dataset and compute secondary structure
predictions as described in steps 1 and 2.
4. Repeat step 3 until convergence. At each iteration, start
from the original dataset and perform reduction.
5. Take the average of the three posterior probability distri-
butions and compute the final prediction as in step 2.

It has been observed that performing the dataset reduction
step only once (i.e., one iteration) generated satisfactory
results [1].

III. TRAINING SET REDUCTION METHODS

In this section, we describe three dataset reduction meth-
ods that are used to refine the parameters of an HSMM:
composition based reduction, alignment based reduction and
reduction using Chou-Fasman parameters. In each method,

the dataset reduction is based on a similarity (or a distance)
measure. We considered two types of decision boundaries to
classify proteins as similar or dissimilar. The first approach
selects the first 80% of the proteins in the original dataset
that are similar to the input protein. The second approach
applies a threshold and selects proteins accordingly.

A. Composition Based Reduction

In this method, the distance between the predicted sec-
ondary structure and the secondary structure segmentation
of a training set protein is computed as follows:

D = max(|Hp−Ht |, |Ep−Et |, |Lp−Lt |), (1)

where Hp, Ep, and Lp denote the composition of α-helices,
β -strands and loops in the predicted secondary structure,
respectively. Similarly Ht , Et , and Lt represent the compo-
sition of α-helices, β -strands and loops in the training set
protein. Here, the composition is defined as the ratio of the
number of secondary structure symbols in a given category
to the length of the protein. For instance, Hp is equal to the
number of α-helix predictions divided by the total number
of amino acids in the input protein. This measure allows us
to reduce the training set to proteins that belong to the same
SCOP class [11]. Thus, for example, a prediction with high
α-helix content is expected to generate a training set that
contains proteins in all-α class. After, sorting the proteins in
the training set, we considered two possible approaches to
construct the reduced set: (1) selection of the first 80% of
the proteins with the lowest D values; (2) selection of the
proteins that satisfy D < 0.35 1.

B. Alignment Based Reduction

In this method, first, pairwise alignments of the given
protein to training set proteins are computed. Then proteins
with low alignment scores are excluded from the training
set. As in the composition based method, two approaches
are considered to obtain the reduced dataset: (1) selection
of the first 80% of the proteins with the highest alignment
scores; (2) selection of the proteins with alignment scores
above a threshold. Here, the threshold is computed by finding
the alignment score that corresponds to the threshold used
in the composition based reduction method. In the following
sections, we will give more details on pairwise alignment
settings.

1) Alignment Scenarios: We considered the following
cases:

• Alignment of secondary structures (SS)
• Alignment of amino acid sequences (AA)
• Joint alignment of amino acid sequences and secondary

structures (AA+SS)

In the first case, the aligned symbols are the secondary
structure states, which take one of the three values: H, E,
or L. In the second case, the symbols are the amino acids
and finally, in the third case, the aligned symbols are the
pairs of amino acid and secondary structure type.

1The threshold is found experimentally [1].
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2) Score Function: The score of an alignment is com-
puted by summing the scores of the aligned symbols
(matches and mismatches) as well as the gapped regions.
This is formulated as follows:

S =
r

∑
k=1

(αMaa(ak,bk)+βMss(ck,dk))+G (2)

where S is the alignment score, r is the total number of
match/mismatch pairs, G is the total score of the gapped
regions, ak, bk represent the kth amino acid pair of the aligned
proteins (the input and the training set protein, respectively),
ck, dk denote the kth secondary structure pair of the aligned
proteins, Maa(.) is the amino acid similarity matrix, Mss(.)
is the secondary structure similarity matrix, and finally, the
parameters α , and β determine the weighted importance of
the amino acid and secondary structure similarity scores,
respectively. To compute possible alignment variations de-
scribed in the previous section, α and β take the following
values: (1) α = 0,β = 1 to align secondary structures; (2)
α = 1,β = 0 to align amino acid sequences; (3) α = 1,β = 1
to align amino acid and secondary structures in a joint
manner.

3) Similarity Matrices: We used the BLOSUM30 table
[12] as the amino acid similarity matrix and the Secondary
Structure Similarity Matrix (SSSM) [13] shown in Table I.

TABLE I

SECONDARY STRUCTURE SIMILARITY MATRIX, WHICH IS USED TO

SCORE THE SIMILARITY OF TWO SECONDARY STRUCTURE SYMBOLS.

Mss H E L
H 2 -15 -4
E -15 4 -4
L -4 -4 2

4) Gap Scoring: When a symbol in one sequence does
not have any counterpart (or match) in the other sequence,
then that symbol is aligned to a gap symbol ’-’. Allowing
gap regions in an alignment enables us to better represent
the similarity between the aligned sequences in a biologically
meaningful manner. In the state-of-the-art gap scoring, open-
ing a gap is penalized more than extending it. For example,
in the “affine gap scoring”, which is one of the most widely
used gap scoring techniques, starting a gap is scored by the
parameter go, and extending a gap region is scored by ge. In
that case, the total gap score in (2) is computed as:

G = Nogo +Nege, (3)

where No is the total number of gap openings, and Ne is
the total number of gap extensions. In this work, we set the
parameters go, and ge to -12, and -2, respectively.

5) Optimum Alignment: Given a scoring function, the
computation of the optimum (best scoring) alignment can
be found using a dynamic programming approach. In this
paper, we used the Smith-Waterman algorithm to compute
the local alignment between a pair of proteins. Further details
on the alignment algorithms and dynamic programming can
be found in Durbin et al. [14].

6) Score Normalization: After computing the raw score
of an alignment, it is useful to normalize it to a statistically
meaningful range. In this paper, we normalized the alignment
score by the average length of the aligned proteins. In that
case, the normalized score is computed as 2 rawscore

l1+l2
, where

l1, and l2 are the lengths of the aligned proteins.

C. Reduction using Chou-Fasman parameters

In this method, the training set reduction is based on the
Chou-Fasman distance measure, which is defined as:

Dc f = ∑
k∈H,E,L

{
1
lp

lp

∑
j=1

fk(q( j))− 1
lt

lt

∑
j=1

fk(h( j))

}
. (4)

Here, lp is the length of the input protein, lt is the length of
the training set protein, q( j) is the jth amino acid of the input
protein, h( j) is the jth amino acid of the training set protein,
and fk(z) is the Chou-Fasman coefficient that reflects the
propensity of the amino acid of type z to be in the secondary
structure state k. These coefficients can be computed as
described in [15]. In this formulation, the secondary structure
information of the proteins is not used and each amino acid
is allowed to take three possible secondary structure states.
In a slightly modified version of this method, we defined
the Chou-Fasman distance using the secondary structure
information as follows:

Dc f ,2 =

{
1
lp

lp

∑
j=1

fk(q( j))(q( j))− 1
lt

lt

∑
j=1

fk(h( j))(h( j))

}
, (5)

where k(q( j)) is the predicted secondary structure state for
the jth amino acid of the input protein, and k(h( j)) is the
secondary structure state for the jth amino acid of the training
set protein. In Chou-Fasman based reduction, we computed
the reduced dataset by selecting the first 80% of the proteins
with the lowest Chou-Fasman distances.

IV. RESULTS AND DISCUSSION

In our simulations, we used the EVA set of “sequence-
unique” proteins [16] derived from the PDB database [17].
We removed sequences shorter than 30 amino acids and
arrived to a set of 2720 proteins. To reduce eight secondary
structure states used in the DSSP notation to three, we used
the following conversion rule: H, G to H; E, B to E; I, S, T,
’ ’ to L. We used the PDB SELECT dataset to compute the
Chou-Fasman coefficients (i.e., the function f (.) in (4) and
(5)) as in [15]. Here, the coefficients reflect the propensity
of an amino acid to be either in H, E, or L state, which are
defined using the above conversion rule.

We evaluated the performances of the methods by a leave-
one-out cross validation experiment (jacknife procedure). At
each step, a protein is chosen as the test example and is
taken out from the dataset. The remaining proteins form
the training set and are used to estimate the parameters of
the hidden semi-Markov model (i.e., transition, length and
emission distributions). Since the true secondary structures
were available, we used the maximum-likelihood estimation
procedure, in which the observed frequencies for the desired
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quantities are divided by a proper normalization factor to
compute the probability values. After estimating the model
parameters, we predicted the secondary structure sequence
of the test protein and repeated the leave-one-out procedure
until all the proteins in the test set are evaluated. To save
computation time, we restricted our test data to the first 600
proteins in the dataset, which gave a good approximation to
the true result. Then, we computed the performance measures
by taking the true secondary structures of the proteins as
reference. To evaluate the performance, we chose the three-
state-per-residue accuracy (Q3) as the overall sensitivity
measure, which is computed as the total number of correctly
predicted amino acids in all dataset proteins divided by the
total number of amino acids in the dataset.

From the results shown in Tables II and III, the com-
position based reduction method performs better than the
other reduction methods. This is mainly because of the fact
that composition based reduction does not impose strong
constraints, which serves to compensate for the errors made
in the initial secondary structure prediction. In addition,
threshold based reduction is slightly better than the reduction
that selects the first 80% of the most similar proteins.
Among the methods being compared, the composition based
reduction method with thresholding gave the most accurate
result, where the secondary structure prediction accuracy is
improved by 0.6% compared to the condition with no re-
training. Another advantage of the composition based method
is its low computational complexity.

Comparing the alignment based reduction methods, the
best result is obtained by the method that aligns secondary
structures. Joint alignments of amino acid sequences and
secondary structures did not perform better than secondary
structure alignments. This is not surprising because in single-
sequence condition the input protein is not statistically simi-
lar to dataset proteins at the amino acid level. Therefore, the
discriminative power of the amino acid similarity matrix is
weaker than the secondary structure similarity matrix.

TABLE II

SENSITIVITY MEASURES OF THE TRAINING SET REDUCTION METHODS.

THE TOP 80% OF THE PROTEINS ARE CLASSIFIED AS SIMILAR TO THE

INPUT PROTEIN.

Method Q3(%)
Composition Based 67.01

Alignment Based (SS) 67.00
Alignment Based (AA+SS) 66.92

Alignment Based (AA) 66.69
Chou-Fasman Based (Dc f ) 66.65

No Re-training 66.59
Chou-Fasman Based (Dc f ,2) 66.50

V. CONCLUSIONS

We showed that the training set reduction followed by
the re-estimation of the model parameters improves the
secondary structure prediction accuracy in single-sequence
condition. Among the methods being compared, the compo-
sition based reduction technique with thresholding generated

TABLE III

SENSITIVITY MEASURES OF THE TRAINING SET REDUCTION METHODS.

THE DATASET PROTEINS ARE CLASSIFIED AS SIMILAR TO THE INPUT

PROTEIN BY APPLYING A THRESHOLD.

Method Q3(%)
Composition Based 67.17

Alignment Based (SS) 67.12
Alignment Based (AA+SS) 67.06

the most accurate results. This is mainly because of the fact
that composition based reduction does not impose strong
constraints, which serves to compensate for the errors made
in the initial secondary structure prediction. As a future work,
we are planning to optimize the threshold parameter used
to construct the reduced dataset. In addition, the methods
analyzed can be applied to the second class of prediction
algorithms, which utilize evolutionary information in the
form of alignment profiles or multiple alignments.

REFERENCES

[1] Z. Aydin, Y. Altunbasak, and M. Borodovsky, “Protein secondary
structure prediction for a single sequence using hidden semi-Markov
models,” BMC Bioinformatics, vol. 7, no. 178, 2006.

[2] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” J. Mol. Biol., vol. 147, pp. 195–197.

[3] S. F. Altschul, W. Gish, W. Miller, E. Y. Myers, and D. J. Lipman,
“A basic local alignment search tool,” J. Mol. Biol., vol. 215, pp.
403–410.

[4] W. R. Pearson, “Rapid and sensitive sequence conparisons with
FASTP and FASTA,” Methods in Enzymology, vol. 183, pp. 63–98.

[5] M. Gribskov, A. McLachlan, and D. Eisenberg, “Profile analysis:
Detection of distantly related proteins,” P.N.A.S., USA, vol. 84, pp.
4355–4358.

[6] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler,
“Hidden Markov models in computational biology: Applications to
protein modeling,” J. Mol. Biol., vol. 235, pp. 1501–1531.

[7] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs,” Nucleic Acids
Research, vol. 25, pp. 3389–3402.

[8] K. Karplus, C. Barrett, and R. Hugley, “Hidden Markov models for
detecting remote homologies,” Bioinformatics, vol. 14, pp. 846–856.

[9] D Frishman and P Argos, “Seventy-five percent accuracy in protein
secondary structure prediction,” Proteins, vol. 27, pp. 329–335, 1997.

[10] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” vol. 77, no. 2, pp. 257–286, 1989.

[11] A G Murzin, S E Brenner, T Hubbard, and C Chothia, “SCOP: a
structural classification of proteins database for the investigation of
sequences and structures,” J. Mol. Biol., vol. 247, pp. 536–540, 1995.

[12] S. Henikoff and J.G. Henikoff, “Amino acid substitution matrices from
protein blocks,” P.N.A.S. USA, vol. 89, pp. 10915–10919, 1992.

[13] A. Wallqvist, Y. Fukunushi, L. R. Murphy, A. Fadel, and R. M. Levy,
“Iterative sequence/secondary structure search for protein homologs:
comparison with amino acid sequence alignments and application to
fold recognition in genome databases,” Bioinformatics, vol. 16, no.
11, pp. 988–1002, 2000.

[14] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Se-
quence Analysis: Probabilistic models of proteins and nucleic acids,
Cambridge University Press, 1981.

[15] P. Chou and G. Fasman, “Empirical predictions of protein conforma-
tion,” Annu. Rev. Biochem., vol. 47, pp. 251–276, 1978.

[16] “Eva: secondary structure (intro):,”
http://cubic.bioc.columbia.edu/eva/doc/intro sec.html.

[17] “The protein data bank,” http://www.rcsb.org/pdb.

5028

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 25, 2008 at 18:41 from IEEE Xplore.  Restrictions apply.


