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Abstract—Secondary structure prediction is an invaluable tool in
determining the 3-D structure and function of proteins. Typically,
protein secondary structure prediction methods suffer from low
accuracy in -strand predictions, where nonlocal interactions play
a significant role. There is a considerable need to model such long-
range interactions that contribute to the stabilization of a protein
molecule. In this paper, we introduce an alternative decoding tech-
nique for the hidden semi-Markov model (HSMM) originally em-
ployed in the BSPSS algorithm, and further developed in the IPSSP
algorithm. The proposed method is based on the N-best paradigm
where a set of most likely segmentations is computed. To generate
suboptimal segmentations (i.e., alternative prediction sequences),
we developed two N-best search algorithms. The first one is an

stack decoder algorithm that extends paths (or hypotheses) by
one symbol at each iteration. The second algorithm locally keeps
the end positions of the highest scoring previous segments and
performs backtracking. Both algorithms employ the hidden semi-
Markov model described in Aydin et al. [5], and use Viterbi scoring
to compute the N-best list. The availability of near-optimal seg-
mentations and the utilization of the Viterbi scoring enable the
sequences to be rescored using more complex dependency models
that characterize nonlocal interactions in -sheets. After the score
update, one can either keep the segmentations to be employed in
3-D structure prediction or predict the secondary structure by ap-
plying a weighted voting procedure to a set of top scoring 1
segmentations. The accuracy measures of the N-best method when
used to predict the secondary structure are shown to be compa-
rable or better than the classical Viterbi decoder (MAP estimator),
tested under the single-sequence condition. When no rescoring is
applied, the stack decoder algorithm with sufficiently large im-
proves the overall sensitivity measure ( 3) of the Viterbi algo-
rithm by 1.1%. At the same value, the N-best Viterbi algo-
rithm improves the 3 measure by 0.25% as well as the sensi-
tivity measures specific for each secondary structure type ( obs,
obs, obs). When the sequences are rescored using the poste-

rior probability distribution computed by the posterior decoding
algorithm (MPM estimator), N-best Viterbi improves the 3 mea-
sure of the Viterbi algorithm by 2.6%. The rescored N-best list ap-
proach also enables us to generate suboptimal segmentations that
are valid sequences (i.e., realizable from the hidden semi-Markov
model). Although the N-best algorithms and the score update pro-
cedure brought significant improvements over the Viterbi algo-
rithm, they were not able to outperform the posterior decoding al-
gorithm in the single-sequence condition. Further improvements in
the prediction accuracy should be possible with the incorporation
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of sophisticated models for nonlocal interactions and other phys-
ical constraints that stabilize the overall structure of a protein.

Index Terms—Hidden semi-Markov model, N-best list, protein
secondary structure prediction, single-sequence prediction, stack
decoder, suboptimal segmentations.

I. INTRODUCTION

PROTEIN secondary structure prediction is important as it
provides direct insights into the functional role of a pro-

tein [6]–[12]. In addition, it can be a step toward the prediction
of the 3-D structure [13] or it can be included in fold recogni-
tion methods, in which a target amino acid sequence with an
unknown structure is compared against a library of structural
templates (folds) and the best scoring fold is assumed to be the
one adopted by the sequence [14].

The three major secondary structure states are the -helix
, the -strand {E}, and the loop {L}. -helices are strength-

ened by hydrogen bonds between every fourth amino acid so that
the protein backbone adopts a helical configuration as shown in
Fig. 1(a). Likewise in loops (e.g., turns or bends), the hydrogen
bonding is mostly local. For example, the turn segment in
Fig. 1(b) has a hydrogen bond between the oxygen and hydrogen
atoms of the first and the fourth amino acids, respectively. The
hydrogen bonding structure in -strands is slightly different,
where both local and nonlocal interactions are observed. In

-strands, the most common local hydrogen bonding is between
every two amino acids, and nonlocal interactions are due to
hydrogen bonds between amino acid pairs positioned in inter-
acting -strand segments. A -sheet is a set of such segments,
in which the interacting segment pairs adopt either a parallel or
an antiparallel conformation as shown in Fig. 1(c)–(d).

A protein secondary structure prediction algorithm assigns
to each amino acid a structural state from a three-letter alphabet

.1 There are two types of algorithms in protein
secondary structure prediction. A single-sequence algorithm
does not use information about other similar (homologous)
proteins. The algorithm should be applicable for a sequence
with no sequence similarity to any other protein sequence.
Algorithms of another type incorporate additional evolutionary
information from multiple alignments or multiple alignment
profiles, which are derived from homologous proteins [15],
[16]. Therefore, the prediction accuracy of such an algorithm
should be higher than one of a single-sequence algorithm. The
accuracy (sensitivity) of the current state-of-the-art single-se-
quence prediction methods approaches 70% [5]. The accuracy

1There are other alphabets, such as the eight-letter DSSP alphabet (see Sec-
tion V).

1053-587X/$25.00 © 2007 IEEE



AYDIN et al.: BAYESIAN PROTEIN SECONDARY STRUCTURE PREDICTION WITH NEAR-OPTIMAL SEGMENTATIONS 3513

Fig. 1. (a), (b) Local interactions in the �-helix and loop segments. (c), (d) Nonlocal interactions in �-strand segments (the top diagrams illustrate �-strands in
cartoon representation). In all diagrams, hydrogen bonds are shown as dashed lines. Solid lines represent covalent bonds. The color representations of the atoms in
(a): carbon (C ) is dark gray, carbon (inC = O group) is light gray, hydrogen is white, oxygen is red, and nitrogen is blue. The color representations of the atoms
in (b), (c), and (d): carbon is black, hydrogen is white, oxygen is red, and nitrogen is blue. Side chains are represented as purple spheres. (a) An �-helix segment.
(b) A turn segment. (c) Antiparallel conformation. (d) Parallel conformation. (Reprinted from [52]. Illustration, I. Geis. Rights owned by Howard Hughes Medical
Institute. Not to be used without permission).

of the state-of-the-art prediction methods that employ multiple
alignments or alignment profiles is close to 80% [17]. The
secondary structure prediction performance can be further
improved by consensus classifiers, in which different predic-
tion methods are combined to improve over a single method
[18], [19]. The theoretical limit of the accuracy of secondary
structure assignment from an experimentally determined 3-D
structure is estimated to be 88% [20]. A real-time analysis and
comparison of various protein secondary structure prediction
servers can be found at the EVAsec website [21]. A compre-
hensive evaluation of the protein secondary structure prediction
algorithms can be found in Robles et al. [18].

Single-sequence algorithms for the protein secondary struc-
ture prediction are important because a significant percentage
of proteins identified in genome sequencing projects has no de-
tectable sequence similarity to any known protein. Also, many
of these hypothetical proteins do not have detectable similarity
to any protein at all. Such “orphan” proteins may represent a
sizable portion of a proteome.2 For an orphan protein, any sec-
ondary structure prediction method functions as a single-se-

2Proteome is the complete set of proteins that can be expressed by the genetic
material of an organism.

quence method. Developing better single-sequence prediction
methods has a definite merit as it helps us to improve the func-
tional annotation of orphan proteins.

Typically, protein secondary structure prediction methods
suffer from low accuracy in -strand predictions. This is mainly
due to the difficulty in modeling nonlocal interactions that are
characteristic of -strands. The -strand sensitivity of a typical
single-sequence prediction method is approximately 25%–50%
and that of a method using evolutionary (or homology) infor-
mation is between 50%–70%. This difference can be explained
by the fact that multiple alignments of sequence families or
alignment profiles implicitly also contain information about
long-range interactions. Further improvements in the predic-
tion accuracy should be achieved by elaborate mathematical
models that characterize long-range interactions in -sheets.
Chu et al. [2], [3] and Cheng and Baldi [22] combined multiple
alignment profiles with nonlocal interaction models. Chu et al.
[2], [3], extended the work by Schmidler et al. [1], [23] and
incorporated the multiple alignment sequence profiles into the
semi-Markov model. They achieved an overall sensitivity of
72%–74% and a -strand sensitivity of 56%–59% from a local
dependency model with multiple alignment profiles. However,
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they did not report any improvement in secondary structure
prediction accuracy through the incorporation of nonlocal in-
teractions. Moreover, their model is based on -strand segment
pair propensities and does not impose global constraints for

-sheet formation. Cheng and Baldi [22] proposed a three-stage
modular approach to predict and assemble the -sheets of a
native protein. Their method exploits global covariation and
the constraints characteristic of the -sheet architecture and
achieves significant improvements over the existing methods
in predicting the -sheet topology of a protein (i.e., which

-strands are assigned to which -sheet, conformational or-
dering of -strands in each -sheet and the types of interaction
(parallel, antiparallel) between each -strand segment pair).
It assumes that the true secondary structure segmentation is
available (either as an experimental sequence or as a predic-
tion) and finds the optimum beta-sheet conformation for that
segmentation. However, Cheng and Baldi [22] did not analyze
how the derived energy functions can discriminate a false
secondary structure from the correct one, and did not apply
their method to the secondary structure prediction problem. In
single-sequence predictions, Frishman and Argos [4] proposed
a method that incorporates a nonlocal interaction model into a
nearest neighbor algorithm. Their method achieved an overall
accuracy of 68%, which is not significantly higher than the
accuracy of the current state-of-the-art methods utilizing local
correlations only [5]. Besides, for longer protein sequences
with many potential stretches of -strand residues, the mu-
tual signal from complementary -strands fades and even the
distinction between antiparallel and parallel sheets becomes
weak. Therefore, there is still a considerable need to model
long-range interactions that contribute to the stabilization of a
protein molecule in an attempt to improve the accuracy of the
secondary structure prediction.

In this paper, we introduce an alternative decoding tech-
nique for the hidden semi-Markov model (HSMM) originally
employed in the BSPSS algorithm [1], and further developed
in the IPSSP algorithm [5]. The proposed method is based on
the N-best paradigm where a set of suboptimal segmentations
(N-best list) is computed as an alternative to the most likely
segmentation. N-best methods have found diverse applica-
tions in speech recognition [24]–[27], sequence-sequence
alignments [28]–[30], sequence-structure alignments [31],
[32], gene prediction [33], [34], and topology prediction for
outer-membrane proteins [35], [36]. To compute suboptimal
segmentations, we developed two N-best algorithms: modified
stack decoder and N-best Viterbi. The first one is an stack
decoder algorithm that extends paths (or hypotheses) by one
symbol at each iteration. The second algorithm locally keeps
the end positions of the highest scoring previous segments
and performs backtracking. Both algorithms employ a hidden
semi-Markov model [5], and use Viterbi scoring to compute
the N-best list. The availability of near-optimal segmentations
and the utilization of the Viterbi scoring enable the sequences
to be rescored using more complex dependency models that
characterize nonlocal interactions in -sheets. After the score
update, one can either keep the segmentations to be employed
in 3-D structure prediction or predict the secondary structure

prediction by applying a weighted voting procedure to a set
of top scoring segmentations. The proposed N-best
algorithms and techniques can also be applied to other problems
that employ hidden Markov models (HMMs), such as video
scene annotation, and machine translation.

The organization of this paper is as follows: In Section II,
protein secondary structure prediction from the hidden semi-
Markov models is described. In Section III, two N-best methods
that generate suboptimal segmentations of secondary structure
from the hidden semi-Markov model are introduced. Secondary
structure prediction by applying rescoring and majority voting
procedures is explained in Section IV. In Section V, simulation
results on the performances of the N-best algorithms are pre-
sented. The extension of the current framework to model non-
local interactions in -sheets is discussed in Section VI, fol-
lowed by the concluding remarks in Section VII.

II. PROTEIN SECONDARY STRUCTURE PREDICTION WITH

HIDDEN SEMI-MARKOV MODEL

A secondary structure of a protein can be defined by a
vector , where is a sequence of the structural seg-
ment end positions and is a sequence that determines the
structural state of each segment ( -helix, -strand or loop).
For instance, for the secondary structure shown in Fig. 2,

and .
Given a statistical model, the problem of protein secondary
structure prediction can be stated as the problem of finding
the maximum a posteriori probability estimator. That is, given
an amino acid sequence ,3 one has to find the vector
with maximum a posteriori probability , as defined
by an appropriate statistical model. Using Bayes’ rule, this
probability can be expressed as

(1)

where denotes the sequence-likelihood probability
and is the a priori probability. Since is constant
with respect to , maximizing is equivalent
to maximizing . Hence, the MAP estimator
takes the following form:

(2)

To proceed further, we need models for each probabilistic term.
We model the a priori probability distribution as
follows:

(3)

Here, denotes the total number of uniform secondary struc-
ture segments. is the probability of transition from
a segment with secondary structure type to a segment with
secondary structure type . The third term

3R = (R ; . . . ; R ), where R is the ith amino acid.
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Fig. 2. Secondary structure sequence and its representation by structural
segments.

reflects the length distribution of the secondary structure seg-
ments by assuming

(4)

where is equal to the segment length (Fig. 2). The
typical form of the segment length distribution for different sec-
ondary structure types is illustrated in [1], [3], and [37].

The likelihood term can be modeled as

(5)

Here, denotes the sequence of amino acid residues with
position indices from to . The probability of observing a par-
ticular amino acid sequence in a segment adopting a particular
type of secondary structure is . This term
is assumed to be equal to . Thus,
this probability depends only on the secondary structure type of
a given segment, and not of adjacent segments. Note that with
this assumption, we ignore the nonlocal interactions observed
in -sheets. On the other hand, this simplification enables us to
implement an efficient hidden semi-Markov model.

To elaborate on the segment likelihood term
, we have to consider the

most significant correlation patterns within a secondary
structure segment because a fully dependent model is not
feasible based on the available training data. To achieve
this, we performed a -test to identify the most significant
correlations between amino acid pairs in each type of secondary
structure segment. The details of the statistical analysis, and
the dimensionality reduction can be found in [5] and [38]. The
derived dependency patterns4 are then used to compute the
segment likelihood term as formulated in [1] and [5].

The Bayesian inference approach allows us to imple-
ment secondary structure prediction algorithms following
the theory of HSMM (see [1], [3], and [5] for details of
the HSMM architecture). For instance, the MAP estimation

can be found using
the Viterbi algorithm. Although a valid state sequence (i.e.,
realizable from the HSSM), the Viterbi path does not directly
optimize the three-state-per residue accuracy , which is
the commonly used accuracy measure in secondary structure
prediction computed as

Total # of correctly predicted structural states
Total # of observed aminoacids

(6)

4The patterns employed by the semi-Markov methods evaluated in this paper
can be found in Supplementary File 1 at http://users.ece.gatech.edu/~aydinz/
supp.pdf.

Alternatively, one can determine the sequence of structural
states that are most likely to occur in each position, also known
as the marginal posterior mode (MPM) estimation. In this
approach, the predicted sequence of hidden states is given by

, where is
the secondary structure type of the amino acid at position ,
and the posterior probability distribution can be
computed by the posterior decoding algorithm generalized for
an HSMM [1], [39]. Although the prediction sequence obtained
by this algorithm might not be a perfectly valid state sequence
(i.e., it might not be realizable from the HSMM), the pre-
diction measure defined as the marginal posterior probability
distribution correlates very strongly with the measure [1].
It has been shown in Aydin et al. that the posterior decoding
algorithm, when combined with iterative training, can yield
sensitivity values around 70.3%, which is one of
the best single-sequence results [5]. The performances of the
Viterbi and the posterior decoding algorithms are compared in
Schmidler et al. [1].

III. SUBOPTIMAL STATE SEQUENCES

There are a few methods in the literature that generate an
N-best list. These algorithms can be based on an N-best search
(e.g., time-synchronous Viterbi-style beam search) [24], [25],
on search [26], tree-trellis approach [27], or on divide and
conquer methods [40]. Different from the Viterbi algorithm,
which finds the most probable state sequence (or path), an
N-best method finds the most probable labeling of a given
sequence as well as suboptimal labelings (or segmentations).
Note that in many applications [25], [33], [36], there can be
more than one state sequence that contributes to the same
labeling of a given sequence. Therefore, in general, an N-best
algorithm always produces a labeling with a probability that
is at least as high as the result of the Viterbi algorithm. In the
secondary structure prediction, however, there is a one-to-one
correspondence between a state sequence and a labeling. In
other words, there can be only one state sequence per labeling.
Hence, an exact N-best algorithm will produce the Viterbi
segmentation as the most likely secondary structure labeling,
and the 1-best procedure described in [33] is reduced to the
Viterbi algorithm.

In this paper, we developed two approximate N-best algo-
rithms for protein secondary structure prediction that employ
hidden semi-Markov models. The first algorithm is a modified
stack decoder and the second one is an extension of the Viterbi
search. In the next section, we will describe the modified stack
decoder algorithm.

A. Modified Stack Decoder

The stack decoder, a search methodology that is well known
in the speech recognition literature, was introduced by re-
searchers at IBM [41] and is a variant of the search [26],
[42]. One can think of a stack decoder as a suboptimal tree
search with many appealing properties. The basic stack decoder
algorithm can be found in [26]. The ideas that underpin stack
decoding are those of sequential decoding in communications
theory [41] and of heuristic search in artificial intelligence [42].
These search algorithms are time asynchronous, in which the
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best scoring path or hypothesis, irrespective of time, is chosen
as an extension and this process is continued until a complete
hypothesis is determined. In the classical implementation of
the stack decoder, the stack consists of an ordered heap, which
holds a number of partial hypotheses where, in our case, the
hypotheses are partial secondary structure sequences. At each
iteration, hypotheses of different lengths are extended by one
segment and are compared to each other, where only the high
scoring ones are kept in the stack as surviving paths.

The crucial function for a stack decoder algorithm is the es-
timated score (log likelihood) of hypothesis at time , and is
given by

(7)

Here, is the score of the partial hypothesis using infor-
mation to time , and is the estimate of the best possible
score (maximum log likelihood) in extending the partial hypoth-
esis to a valid complete hypothesis. It has been shown that as
long as is an upperbound on the actual log likelihood,
then the search algorithm is admissible [42] (i.e., no errors will
be introduced that would not occur if an exhaustive search was
performed). This approach allows the hypotheses of different
lengths to be compared. However, the disadvantage of approx-
imating is the requirement to look ahead at the data. An
alternative approach [43]–[45] does not rely on looking ahead.
Instead, is constructed such that hypotheses with earlier
reference times always have higher scores than those with later
reference times.

In this paper, we propose a modified stack decoder algorithm
to generate suboptimal secondary structure segmentations for
a given amino acid sequence. Our approach is similar to the
Tailbiting decoder introduced in [46]. In the proposed method,
each hypothesis of the stack consists of a secondary structure
sequence extended up to position , where , and
is the total length of the amino acid sequence. The score of the
th hypothesis with length is defined as ,

which is the joint probability of observing the amino acid se-
quence up to position , and the secondary structure la-

beling of the hypothesis . Here, , where
is the stack size.
The steps of the algorithm are as follows. We first initialize

the stack by including all possible segmentations up to a certain
position so that the stack contains exactly segmenta-
tions. Then, for each hypothesis, we consider possible candidate
extensions and keep the ones with the highest scores. Here, an
extension is obtained by concatenating a single secondary struc-
ture symbol (either , , or ) instead of a secondary structure
segment. At each iteration, we extend the hypotheses by one
symbol until the th position is reached, where each hypothesis
consists of a secondary structure sequence of length . Finally,
we sort hypotheses in a decreasing order of scores. Stack ini-
tialization and hypothesis extension steps of the algorithm are
illustrated in Fig. 3. Since the extensions are performed by a
single secondary structure symbol instead of a segment, at a
given iteration, each hypothesis has the same length. This ap-
proach ensures fair comparisons between the scores of the in-

dividual hypotheses and eliminates the need to approximate or
construct in (7). Another advantage of this method is re-
lated to the selection of the best extension for a given hypothesis.
In the case of segment extensions, we are most likely to choose
the segments with minimum lengths because for local exten-
sions, shorter segments have higher probability scores. One way
to solve this problem would be to design a score normalization
method to compensate for the decrease in the score of a hypoth-
esis due to its length. Unfortunately, such methods usually hinge
on some kind of a heuristic, which may not perform well for dif-
ferent protein families. Therefore, we are proposing a method
that extends the hypotheses by only a single secondary struc-
ture symbol at each iterative step.

The selection of the best scoring extensions from position
to is as follows. We first obtain the list of all possible can-
didate extensions derived from the entire set of hypotheses.5 In
computing the extensions, we satisfy the minimum length re-
quirements for the three types of secondary structure. In the
current implementation, we restricted the lengths of the -he-
lices, -strands and loops to be greater than or equal to 5, 3,
and 1, respectively. Before extending a hypothesis, the algo-
rithm checks whether the last segment of its secondary struc-
ture sequence satisfies the minimum length requirement. If the
length of the last segment is already greater than or equal to
the corresponding lowerbound, then all three extensions (H, E,
and L) are performed and the extended hypotheses are stored in
the candidate extension list. If the last segment is shorter than
the lowerbound, then that segment is extended only by its ex-
isting secondary structure type and that hypothesis is kept in
the stack without being included in the candidate extensions
list. If the number of such hypotheses with incomplete exten-
sions is , then the number of hypotheses to be extended for
the candidate extensions list is and the total
number of hypotheses in candidate extension list becomes

. Hence, the set of candidate extensions is derived from
those hypotheses in which all secondary structure segments sat-
isfy the minimum length requirements. Having compiled the list
of candidate extensions, we compute the score of each hypoth-
esis using the parameters of the hidden semi-Markov model. Fi-
nally, we sort the hypotheses in the candidate extension list in
decreasing order of scores and insert the first hypotheses
back into the stack. Note that for a hypothesis in the candidate
extension list, if the extension initiates a new -helix or -strand
segment, then this extended hypothesis will not satisfy the min-
imum length requirement. To prevent the score of the new hy-
pothesis to be computed as zero,6 we modified the length distri-
bution of the -helices and -strands for small segments to take
nonzero values. We chose a value that is large enough to initiate

-helix and -strand segments and small enough to avoid paths
with dominantly short segments. In the current implementation,
the probability of short -helices and short -strands

is set to .

5Maximum length of this list is 3 �N , where N is the total number of hy-
potheses or the stack size.

6Parameter estimation for hidden semi-Markov model was initially performed
using maximum-likelihood estimation procedure on a training set, in which each
protein satisfies the minimum length requirements.
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Fig. 3. Modified stack decoder algorithm.

The steps of the algorithm can be summarized as follows.

1) Initialize the stack of size with all possible extensions
up to position .

2) .
3) Select a hypothesis and check if the last segment satisfies

the minimum length requirement.

a) If the last segment is shorter than the lowerbound, extend
the hypothesis with only the type of the last segment, and
keep it in the stack.

b) If the last segment satisfies the minimum length
requirement, perform all possible extensions (H, E,
L) and put the extended hypothesis into the candidate
extensions list.

c) Repeat 3 until all hypotheses are evaluated. If the
number of hypotheses that did not satisfy the minimum
length requirements is , the number of hypotheses in
the candidate extensions list becomes .

4) Select the highest scoring hypotheses from the
candidate extension list and insert into stack. Discard the
remaining hypotheses.

5) Check if the end of sequence is reached.
a) If (j equal to n), terminate.
b) If (j not equal to n), go to 2.

To evaluate the computational complexity of the algorithm
it is useful to divide the operations into two parts: 1) sorting
and 2) score computation. To obtain the top scoring
hypotheses in the candidate extensions list, we use the heap sort
algorithm, which has complexity, where is the
size of the list that is going to be sorted. In C implementation, it
takes approximately 30 s to sort a list of hypotheses using
the heap sort algorithm. Since sorting operations are performed
for each position , the total number of such
operations is , where is the average size
of the candidate extensions list. In the worst-case scenario,
takes the value . Therefore, the computational requirements

of the sorting operations are on the order of . The
computational complexity arising from the score computation
is on the order of . For a protein of length 200 amino
acids, and a stack of size , it takes approximately 5
min.7 to perform all extensions up to the last position and obtain
a sorted list.

B. N-Best Viterbi Algorithm

A generalization of the Viterbi algorithm can be used to com-
pute the N-best state sequences. The idea behind the N-best
Viterbi algorithm is analogous to the word-dependent N-best al-
gorithm introduced by Schwartz and Austin [24]. In the classical
Viterbi algorithm, for each secondary structure segment that is
of type and ends at position , we consider pos-
sible previous segments that are of type and end at position

. We then store the maximum value of the score function
and the arguments where that maximum is achieved. The
definition of the score function is as follows:

(8)

In this equation, is the joint probability of observing the
amino acid sequence and the secondary structure sequence from
position 1 to . Here, the secondary structure sequence repre-
sents the maximum scoring path from position 1 to , in which
the last segment is of type . The algorithm iterates for positions

, where is the total number of amino acids in the
protein and can take the values from 1 to .

In the N-best Viterbi algorithm, for each , instead of
storing the maximum value and the arguments of , we rank
the possible values of this function with respect to and

7The computation time is estimated by an Intel Pentium III Processor with a
1.2-GHz CPU.
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Fig. 4. Forward pass for the N-best Viterbi algorithm.

store the highest scoring local values as well as the argu-
ments where these values are achieved. Here, typically takes
values from 3 to 6. The difference of this approach from the well
known N-best algorithm [25], [33], [36] is that at each state
ending at position , position indices and types of the local
previous segments are stored instead of the all segment histories
(or paths) ending at that position. The recursion for the forward
pass can be formulated as follows:

(9)

In this equation, outputs the th value of the
function with respect to the argument set , where

. Similarly, returns the argument
set , where the th value of is achieved. is the
joint probability of observing the amino acid sequence and the
secondary structure sequence from position 1 to .
Here, the sequence does not necessarily correspond
to the th best path from position 1 to .8 Instead, it defines
a path that satisfies the following constraints: 1) The last sec-
ondary structure segment is of type and ends at position ;
2) the segment before the last segment is of type and ends
at position ; 3) the segment before the last segment is on
the maximum scoring path that ends at with a secondary
structure type different from . The arguments and ,
where takes its th value are stored into
and , respectively. An iteration of the forward pass
is described in Fig. 4. Once the forward pass is completed,
we perform backtracking and generate alternative prediction
sequences. We start with the th position and consider all
segments ( segments for each secondary structure type) that
end at this position and are of length , where is the

8The kth path is guaranteed for k = 1.

end position of the previous segment that has been stored in the
forward pass. We insert these hypotheses into an array of size

and represent them by character strings, in which the first
values are set to “X” and the last values are assigned to
the secondary structure type of the last segment. Then, for each
hypothesis in the array, we consider all possible extensions by
one segment in the right-to-left direction, insert the extended
sequences into the array, and delete the old sequences. Note
that since two adjacent segments cannot be the same in a hidden
semi-Markov model, the total number of extensions for each
hypothesis is . If the array becomes full before all of the
sequences are extended up to position 1, then we keep those
sequences that are already extended completely and extend
only the noncomplete sequences. This time, the extensions
are performed according to the maximum scoring paths. We
terminate when all sequences are extended up to position 1.
The algorithm can be summarized as follows:

1) For each position and secondary structure type, locally keep
the end positions of the highest scoring previous segments.

2) Array initialization: Insert the segments that end at
position into the array of size . Set the array-full flag to
FALSE.

3) For each hypothesis in the array with extension-finished flag
equal to FALSE:

a) Perform back extensions (add segments in the
right-to-left direction), in which the previous segment types are
different from the type of the current segment.

b) For each back-extension.

i) Check if the total number of hypotheses in the array is .

A) If the array is full, set array-full flag to TRUE. Do not insert
the extended hypothesis into the array. Go to Step 4).

B) If the array is not full and the extension-finished flag is
FALSE, insert the extended hypothesis into the array.

ii) Check whether the back-extended hypothesis reaches the
first position of the protein. If yes, set the extension-finished
flag to TRUE.
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C) Repeat step 3 until the array-full flag is TRUE.

4) If array-full flag is TRUE, then repeat Step 3); this time,
performing the maximum scoring extensions only until the
extension-finished flag is TRUE for each hypothesis.

5) Sort the hypotheses and terminate.

The computational complexity of the algorithm can be eval-
uated as follows. In the forward pass, for each position and
secondary structure type that represents a secondary struc-
ture segment ending at position , the highest scoring local
paths are computed. To do this, we need to consider the seg-
mentations such that the end position of the previous segment

takes values from 1 to . There are a total of
such segmentations for . This requires

operations. Hence, the computational complexity of the
forward pass from score computations is . At each po-
sition and secondary structure type , we keep two arrays of
size to store the segment end position of the previous seg-
ments and the corresponding path scores. To keep previous
segment end positions, a total of comparisons is re-
quired. Hence, the computational requirement to keep local
paths is . Backtracking can be performed by a fast re-
cursive procedure. Finally, the sequences are sorted by a heap
sort algorithm, with complexity. For a protein of
length 200 amino acids, and a stack of size , it
takes approximately 1 min to obtain the sorted list of sub-
optimal sequences. The N-best Viterbi algorithm is faster than
the modified stack decoder algorithm when additional knowl-
edge sources such as nonlocal interaction models are not uti-
lized. When such dependency models are incorporated, then it
might be necessary to update the score of each hypothesis while
extending the hypotheses. In that case, the computational com-
plexity of the N-best Viterbi algorithm is expected to increase.

IV. SECONDARY STRUCTURE PREDICTION

USING AN N-BEST STRATEGY

The availability of an N-best list enables us to choose from
the following options: 1) combine the set of best scoring seg-
mentations by a weighted majority voting procedure and arrive
at a consensus prediction; 2) update the score of each segmen-
tation with more sophisticated functions and compute the final
prediction as in 1); and 3) keep the suboptimal segmentations
so that they can be used by 3-D structure prediction methods or
in expert evaluation. The third option can be considered with or
without a score update procedure. In this paper, we propose the
utilization of an N-best list to compute the secondary structure
prediction for a given amino acid sequence.

To compute suboptimal segmentations, one can use the
modified stack decoder or the N-best Viterbi algorithm. Note
that, while N-best Viterbi generates the Viterbi result (MAP
estimation) as the highest scoring segmentation,9 the modified
stack decoder might not. Therefore, when the modified stack
decoder algorithm is used as the N-best list generator, the most
likely state sequence is separately computed by the Viterbi

9The score of a segmentation is defined as the joint probability of the amino
acid sequence and the secondary structure sequence (i.e., P (R;S;T).

Fig. 5. Secondary structure prediction with near-optimal segmentations. The
N-best Viterbi algorithm does not require the extra computation of the Viterbi
(MAP) segmentation and proceeds with the score update after the N-best list
generation step.

algorithm and is included into the N-best list if it scores higher
than the top segmentation in the list. On the other hand, when
the N-best Viterbi algorithm is used, the MAP segmentation
should be contained in the N-best list and there is no need to
compute it separately. After the N-best list generation step,
the segmentations can be rescored using additional knowledge
sources. Here, we investigated two possible scenarios: no
rescoring, and rescoring with posterior probability distribution

of the IPSSP method [5], which is computed using
the posterior decoding algorithm. In the latter case, the score of
a segmentation is computed as the sum of the posterior proba-
bility values of the secondary structure states at each position.
This can be formulated as follows. Let the th segmentation
be denoted as , where

, and is the secondary structure type of the
amino acid at position . Then, the score of that segmentation is
updated as .

After the score update procedure, the final prediction se-
quence can be computed by applying a weighted voting
procedure to a set of best scoring segmentations. Here,
each sequence is weighted by its segmentation score and the
same score is applied to all positions within the sequence. The
predicted state at position is computed as the
secondary structure type with the highest sum of scores. Setting

reduces to selecting the most likely segmentation as the
prediction sequence. The steps of the method are illustrated in
Fig. 5.

V. RESULTS

In our simulations, we used two datasets. The first one is
the set of “sequence-unique” proteins derived from the PDB
database, which is available from the EVA server’s ftp site:
http://cubic.bioc.columbia.edu/eva/doc/ftp.html. This set con-
tained 3324 proteins, as of September 2004, and the proteins
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in this set were selected to satisfy the condition that the per-
centage of identity between any pair of sequences should not
exceed the length-dependent threshold (for instance, for se-
quences longer than 450 amino acids, ) [47]. The
second set is CB513, which contains 513 nonhomologous pro-
tein chains [48]. A copy of the datasets can be found at http://
users.ece.gatech.edu/~aydinz/Nbest.html.

In all simulations, we removed sequences that contained sec-
ondary structure segments longer than amino acids
because for longer segments, the maximum likelihood estima-
tion for length distribution becomes less reliable due to the small
sample size. In simulations with the N-best algorithms, to fur-
ther refine the datasets and limit the computations, we removed
proteins shorter than 30 and longer than 400 amino acids. After
applying these constraints, 2251 proteins remained in the EVA
set, and 447 proteins in the CB513 set. The eight state secondary
structure assignments for the proteins in the datasets were taken
from the PDB database.10 To reduce the eight secondary structure
state assignment used in the DSSP notation to three, we used the
following conversion rule: H to H; E to E; and all other states to
L, which is also known as the “CK” mapping [16], [48]. We also
considered using the length adjustments proposed by Frishman
and Argos [4] that convert the -helices shorter than five amino
acids and -strands shorter than three amino acids to loops.

In all simulations, we performed a leave-one-out cross-val-
idation, which is a -fold cross-validation experiment with
being equal to the number of proteins in the dataset. At each
step, a protein is chosen as the test example and is taken out from
the dataset. The remaining proteins form the training set and
are used to estimate the parameters of the hidden semi-Markov
model (i.e., transition, length, and emission distributions). Since
the true secondary structures were available, we used the max-
imum-likelihood estimation procedure where we count the ob-
served frequencies for the desired quantities, and apply a proper
normalization factor to compute the probability values. After
estimating the model parameters, we predicted the secondary
structure sequence of the test protein and repeated the leave-
one-out procedure until all proteins are evaluated. Then, we
compute the performance measures by taking the true secondary
structures of the proteins as reference. To evaluate the perfor-
mance, we chose the three-state-per-residue accuracy as
the overall sensitivity measure, which is computed as the total
number of correctly predicted amino acids in all dataset proteins
divided by the total number of amino acids in the dataset. The
sensitivity measure can also be used for each type of secondary
structure. For instance, is computed as the total number
of amino acids correctly predicted as -helix divided by the
total number of amino acids observed in -helix segments [i.e.,
TP/(TP+FN)]. In addition to the measure, we also used
the Segment OVerlap score (SOV), which is based on the av-
erage overlap between the observed and the predicted segments
instead of the average per-residue accuracy. The SOV measure
provides more elaborate scoring in which the predictions that
have high per-residue accuracy but deviate from experimental
segment length distributions are assigned lower scores (see [49],
and [50] for the definition of the SOV measure).

10PDB uses the DSSP algorithm for the assignment of the secondary structure
from the atomic coordinates.

TABLE I
SENSITIVITY RESULTS OF THE VITERBI, MODIFIED STACK DECODER AND

N-BEST VITERBI ALGORITHMS EVALUATED ON THE EVA SET. IN SIMULATIONS

WITH THE N-BEST ALGORITHMS, WEIGHTED MAJORITY VOTING IS APPLIED

TO A SET OF TOP SCORINGM SEGMENTATIONS

A. N-Best Predictors

In this section, we compare the performances of the various
methods including the Viterbi algorithm, the N-best method,
and the IPSSP method. In the first set of simulations, we did not
apply any score update to the N-best list. Then, we evaluated
the effect of updating the segmentation scores with the poste-
rior probability distribution obtained by the IPSSP
method [5] (at http://users.ece.gatech.edu/~aydinz/supp.pdf).
The dependency patterns (feature sets) employed by the eval-
uated methods can be found in Supplementary File 1. To
initialize the frequency tables, Laplace’s rule is used as the
pseudocount method, in which the entries are set to 1.

1) Modified Stack Decoder Versus N-Best Viterbi: We first
compare the performances of the Viterbi, modified stack de-
coder, and the N-best Viterbi algorithms. The size of the N-best
list is chosen as . For simplicity, no score update is
applied. To obtain the final prediction sequence, the best scoring

segmentations are combined by the weighted voting
procedure as explained in Section IV. is chosen as 3 for the
N-best Viterbi algorithm. From Table I, the modified stack de-
coder algorithm performs better than the Viterbi algorithm by
1.1% in terms of the measure. For the N-best Viterbi al-
gorithm, the improvement is only 0.25% because the N-best
Viterbi generates a significantly higher number of sequences
with scores close to the most likely sequence. In addition, the
score differences are smaller for the N-best Viterbi algorithm.
The overall accuracy of the N-best Viterbi can be improved by
increasing the size of the N-best list. A comparison of the struc-
ture-type-specific measures shows that the N-best Viterbi algo-
rithm has the highest and values followed by the
Viterbi algorithm. The highest loop sensitivity is achieved
by the modified stack decoder algorithm. These results show
that the information in suboptimal segmentations is useful and
is capable of improving over the MAP segmentation even when
there is no score update.

2) N-Best List Size: At this stage, we found it useful to in-
vestigate the effect of changing the N-best list size , and the
number of voting sequences . Table II shows the sensitivity
results of the proposed method for different values of and .
Here, suboptimal segmentations are obtained using the N-best
Viterbi algorithm with . From Table II, increasing the
size of the N-best list improved the , , and mea-
sures. For the same value of , increasing the number of voting
sequences improved only the measure. The results demon-
strate that suboptimal segmentations contain valuable informa-
tion and can improve the accuracy when the segmentations are
sampled more densely and the list is deeper. The decrease in the

-strand sensitivity for increasing values of can be explained
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TABLE II
SENSITIVITY RESULTS OF THE N-BEST VITERBI ALGORITHM EVALUATED ON

THE EVA SET FOR CHANGING VALUES OF N ANDM

TABLE III
SENSITIVITY RESULTS OF THE VITERBI, IPSSP, AND N-BEST VITERBI

WITH SCORE UPDATE, EVALUATED ON THE REDUCED EVA SET BY

LEAVE-ONE-OUT CROSS-VALIDATION

by the fact that the current statistical model can only capture
local interactions, which are dominantly observed in -helices
and loops. Therefore, without incorporating additional knowl-
edge sources, N-best methods will not improve the accuracy of
the -strand predictions.

3) Score Update With Marginal Posterior Distribution: In
this section, we investigate the effect of updating the segmen-
tation scores by using the posterior probability distribution

as described in Section IV. We compare the per-
formances of the three methods: Viterbi algorithm, IPSSP
method, and the N-best method with score update. To com-
pute suboptimal segmentations, we used the N-best Viterbi
algorithm with . For the number of voting
sequences used in the weighted majority voting step, we chose
two different values and . The number
of local suboptimal segments is set to 4. The results of the
cross-validation experiments are shown in Tables III and IV for
the EVA set and in Tables V and VI for the CB513 set. In EVA
set simulations, we used the original IPSSP method [5], which
takes the ensemble average of three dependency models each
calibrated by an iterative training procedure. In simulations
with the refined CB513 set, we used the IPSSP-simp method,
which employs reduced versions of the IPSSP’s dependency
models (see Supplementary File 1). In both versions of the
IPSSP, the threshold used in the iterative training step is set
to 35%. For all methods, the Laplacian pseudocount method
is applied to initialize the frequency tables. The
values that are used to obtain the IPSSP predictions and to
update segmentation scores are computed as in Aydin et al.
[5], in which the posterior probability distributions from three
dependency models are averaged (see Supplementary File 1 for
the dependency models).

The score update procedure yields an average improvement
of 2.6% over the Viterbi algorithm in terms of the three-state-

TABLE IV
SOV MEASURES OF THE VITERBI, IPSSP, AND N-BEST VITERBI WITH SCORE

UPDATE, EVALUATED ON THE REDUCED EVA SET BY LEAVE-ONE-OUT

CROSS-VALIDATION

TABLE V
SENSITIVITY RESULTS OF THE VITERBI, IPSSP-SIMP, AND N-BEST VITERBI

WITH SCORE UPDATE, EVALUATED ON THE REDUCED CB513 SET BY

LEAVE-ONE-OUT CROSS-VALIDATION

TABLE VI
SOV MEASURES OF THE VITERBI, IPSSP-SIMP, AND N-BEST VITERBI

WITH SCORE UPDATE, EVALUATED ON THE REDUCED CB513 SET BY

LEAVE-ONE-OUT CROSS-VALIDATION

per-residue accuracy (Tables III and IV), and an average
improvement of 3.5% in terms of the SOV measure (Tables V
and VI). In both simulations, choosing the most likely segmen-
tation as the prediction sequence performed better than the con-
sensus approach (weighted voting) on a set of most likely seg-
mentations. This result can be explained by the fact that, after
applying a score update, the first segmentations get more di-
verse for increasing values of and, hence, less accurate ones
are likely to be selected. Hence, when a score update is per-
formed, it is better to choose the most likely segmentation as
the final prediction sequence.



3522 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 7, JULY 2007

Fig. 6. Two possible patterns for the amino acid pairing of a �-sheet. �-strands are shown as colored segments. The letters correspond
to the amino acid residues.

We have demonstrated that when the sequences are rescored
with more elaborate functions, it is possible to improve the
accuracy of the Viterbi algorithm. Though the N-best method
with the score update using the marginal posterior distribution
did not perform better than the posterior decoding algorithm,
utilization of the N-best approach and the Viterbi scoring has
some advantages. First, suboptimal segmentations generated
by the Viterbi scoring will be valid sequences (i.e., they
will be realizable from the hidden semi-Markov model).
Therefore, after applying the score update procedure, it will
be possible to obtain segmentations that are both valid and
are more accurate than the Viterbi segmentation. In addition,
since the correct secondary structure segmentation is also
realizable from the hidden semi-Markov model, it can be
captured when the size of the N-best list is sufficiently large.
As a third and more important factor, the Viterbi algorithm
optimizes the joint probability of the amino acid and secondary
structure sequences . This
property allows one to remodel the a priori distribution

and the sequence likelihood distribution
by incorporating the nonlocal hydrogen bonding propensities in

-sheets and other constraints that define the overall structure
of a protein. We expect that when nonlocal correlation models
are available, the N-best methods will significantly improve
the -strand predictions, and will contribute to the overall
prediction accuracy.

VI. IMPLICATIONS FOR MODELING NONLOCAL

INTERACTIONS IN -SHEETS

We conclude by discussing a possible extension of this
framework to model nonlocal interactions in protein structures,
providing a possible direction for future improvements in sec-
ondary structure prediction accuracy. The proposed Bayesian
formulation and the hidden semi-Markov model for protein
secondary structure prediction has some limitations due to the
assumptions made in the model derivation. For instance, it is
assumed that the segment likelihood terms are independent
from each other as formulated in (5). This assumption enables
us to implement efficient hidden Markov models. However,
with this assumption and others inherent in the theory of hidden
Markov models, it is not possible to model long-range inter-
actions, especially the nonlocal hydrogen bonds in -sheets

that have a significant role in the stabilization of a protein’s
structure. More complex dependency models are not feasible
due to limitations in the available training data and high com-
putational requirements. To overcome such difficulties, one can
follow a two-stage approach. The first step generates a list of
best scoring prediction sequences (N-best list) that contains
the most likely prediction sequence (MAP solution) as well as
those that are suboptimal under a predefined statistical model.
Such a model contains local correlation information and is
relatively simple. In the second step, the score of each sequence
is updated using a nonlocal correlation model, which is an
extended version of the initial model and utilizes information
related to long-range interactions. The final prediction sequence
can then be computed using a weighted voting scheme applied
to a selected set of top scoring sequences.

A nonlocal interaction model has to capture the intrinsic prop-
erties of -sheet formation. A -sheet is a group of -strand
segments, where each group contains at least two -strands that
interact pairwise through nonlocal hydrogen bonds. Within each

-sheet, -strand pairs can have either parallel or antiparallel in-
teraction as shown in Fig. 1(c)–(d). However, for a given subop-
timal segmentation that contains at least two -strands,

-sheet groups, and interaction types are not defined. Therefore,
there can be numerous ways to group -strands into -sheets,
order them spatially, and specify the type of interaction between
each segment pair. Moreover, due to the possible length differ-
ences between -strand segments, there can be many alterna-
tives to align amino acid pairs that make hydrogen bonding con-
tacts. In Fig. 6, two possibilities are shown for the amino acid
pairing pattern of a -sheet that has three -strand segments.
To include these constraints into the model, we will modify the
computation of the sequence score term as follows.
Let contain -strand segments , where

and let denote the 3-D conformation of these segments
that defines the grouping of -strands into -sheets, spatial or-
dering of -strands, the interaction type of each -strand seg-
ment pair, and the amino acid pairing pattern. Then the score of
a segmentation can be updated as

(10)
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Using Bayes’ rule

(11)

In the above equations, is the a priori distribution of
a 3-D conformation, is the secondary structure
label probability given conformation, and is the
sequence likelihood term for a given conformation. Note that
these terms are quite similar to the ones in the local-dependency
model, except for being replaced with and

is replaced with . To model the
terms in (11), it is necessary to incorporate the constraints that
define the secondary structure including the nonlocal forces in

-sheets. With this motivation, one can update the computation
of the sequence likelihood term as follows:

(12)

where is the total number of -sheets in , such that each sheet
contains -strand segments, and . In the above
formulation, the segment likelihoods of -helices and loops are
computed the same as before [see (5)], but those of -strands are
obtained from a nonlocal model. The computation of the joint
probability term for a -sheet can be simplified as

(13)

Here, we assume that a -strand only depends on a neighboring
-strand. This assumption is quite reasonable since in most
-sheets, -strand segments interact pairwise and form a ladder

topology as in Fig. 6. To elaborate further, we should model
the terms , , and by
including the hydrogen bonding propensities of -strands and
other constraints that stabilize the overall structure of a protein.
At this point, we leave the derivation of a complete model
and estimation of its parameters as a future work. Before con-
cluding this section, it is worthwhile to note that as the number
of -strands increases, the total number of possible conforma-
tions rises exponentially. Therefore, efficient algorithms have
to be developed to search the conformation space and update
the score of a segmentation. Cheng and Baldi [22] introduced
graph-matching algorithms to predict the -sheet architecture
of a given protein (i.e., the -strand grouping, pairing, and
interaction types). These algorithms can be further developed
by eliminating the architectures that never occur in real proteins
(see Ruczinski et al. [51]). The observation frequency of the
remaining architectures can be modeled by the term.
As an alternative to the graph-matching algorithms, one can
select a representative set of conformations using Monte Carlo

sampling similar to the method proposed by Chu et al. [2],
[3], especially for longer proteins with many potential -strand
residues.

VII. CONCLUSION

In this work, we developed two N-Best search algorithms
for the protein secondary structure prediction though the pro-
posed techniques can be also applied to other problems that
employ HMMs, such as gene prediction, topology prediction
for outer-membrane proteins, sequence-sequence and sequence-
structure alignments, speech recognition, video scene annota-
tion, and machine translation. We showed that the information
in suboptimal segmentations is useful and can improve the sen-
sitivity of the Viterbi algorithm up to 1% without applying
any score update. When the segmentations are rescored using
the marginal posterior probability distribution, the improvement
becomes 2.6%. Unfortunately, the two N-best algorithms and
the score update procedure were not able to perform better than
the posterior decoding algorithm in single-sequence predictions.
As a future work, we are planning to develop nonlocal inter-
action models and incorporate them into the N-best method.
Such models will be able to characterize the hydrogen bonding
propensities within -sheets and can further be extended to in-
clude other constraints such as solvent accessibility. We expect
that this will compensate the inadequate modeling of long-range
interactions and improve the overall prediction accuracy.
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